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Abstract—Wireless Charger Network (WCN) emerges as a
promising networking paradigm, employing wireless chargers
with Wireless Power Transfer (WPT) technology to provide
long-term and sustainable energy supply for future networks.
Although extensive research has been conducted in this area
over the last decade, there is currently no comprehensive
survey to compile the latest literature and provide insights
into future research directions. To fill this gap, our survey
explores the recent developments in the active research area
of WCNs. This paper starts by providing a framework of
WCNs in detail, covering aspects of network architecture, various
charging models, network design issues, and typical applications
of WCNs. Then, we give an overview of charger deployment
schemes, focusing on omnidirectional, directional, non-radiative,
and heterogeneous charger deployments. We also provide an
overview of charging scheduling schemes, encompassing power
control, time allocation, energy beamforming, and multi-resource
scheduling. Moreover, we explore communication optimization
schemes, including Medium Access Control (MAC) protocols,
routing protocols, broadcast transmission, and data collection.
Finally, we highlight some future research directions and present
corresponding open issues to advance the research on WCNs.

Index Terms—Wireless power transfer, wireless charger net-
works, deployment, scheduling, communication optimization.

I. INTRODUCTION

W IRELESS Power Transfer (WPT) [1] has emerged
as a viable commercial power supply solution. By
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transmitting electromagnetic energy through the air, WPT
eliminates the need for interconnecting wires, effectively over-
coming limitations such as restricted device mobility, the
high time and cost of wiring, and safety hazards associated
with exposed cables. Up to 2024, more than 350 companies,
including industry giants such as Microsoft, Qualcomm, Sam-
sung, Huawei, and Google, have participated in the Wireless
Power Consortium (WPC) [2], an organization dedicated to
standardizing WPT and driving its development. Moreover, the
wireless power transmission market has reached $31.1 billion
and is expected to exceed $185 billion by 2030 [3].

In conventional battery-powered networks, relying solely
on manual battery replacement cannot guarantee the long-
term and sustainable operation of electronic devices, espe-
cially those distributed in harsh environments such as forests,
bridges, and volcanic areas [4]. To address this limitation,
some studies have proposed energy harvesting, leveraging
ambient energy sources such as solar [5], vibration [6], and
wind [7], to supplement device power. Despite its potential,
energy harvesting’s effectiveness is significantly hampered by
its dependence on environmental conditions, which can be
highly variable and uncontrollable. Recently, benefiting from
the development of the WPT technology, Wireless Charger
Networks (WCNs) [8] have emerged as a superior choice
for providing stable, reliable, and controllable energy supplies
for electronic devices. WCNs overcome the limited energy
bottleneck of electronic devices and have found widespread
applications in various fields, including smart homes [9],
medical systems [10], precision agriculture [11], and Wireless
Identification and Sensing Platform (WISP) [12].

A WCN typically consists of a number of wireless chargers
working together to ensure the long-term and sustainable op-
eration of electronic devices within the network. Specifically,
these chargers use WPT technology to transmit energy to de-
vices equipped with an energy harvesting unit. The harvested
energy is then stored in a rechargeable battery to sustain
the operation of electronic devices. Depending on the WPT
technology employed, wireless chargers can be categorized
into two categories, i.e., radiative chargers (omnidirectional
and directional) and non-radiative chargers (inductive coupling
and magnetic resonance coupling) [13]. Radiative chargers
emit electromagnetic waves that operate in the far-field region,
creating charging areas with complex energy distribution,
especially in overlapping areas of multiple chargers. These
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chargers are well-suited for powering low-power devices [10],
[14]. In contrast, non-radiative chargers rely on magnetic field
coupling for energy transmission, operating in the near field
and limiting transmission distance. Due to their high transmis-
sion efficiency, non-radiative chargers are widely used in our
daily lives, such as providing energy for smartphones [15],
electric toothbrushes [13], and electric vehicles [16].

Constructing effective and efficient WCNs involves address-
ing the following key challenges: 1) where should wireless
chargers be strategically deployed? Strategic deployment of
wireless chargers is fundamental to WCNs. Deploying ra-
diative chargers requires consideration of factors such as
device coverage, charging efficiency, and radiation characteris-
tics. Deploying non-radiative chargers necessitates attention to
charging efficiency and multi-hop charging scenarios. There-
fore, optimizing the deployment of various types of chargers to
enhance network charging performance is extremely challeng-
ing; 2) how can limited wireless charger resources be effec-
tively scheduled? Following charger deployment, another crit-
ical challenge is the effective scheduling of charger resources
such as power, time, and energy beams. With a constrained
resource budget, devising a rational scheduling strategy is
essential for maintaining charging performance, coordination,
and security of the WCN; and 3) how can the charging
process be coordinated to optimize communication in WCNs?
The integration of wireless charging brings new demands
on the network’s communication mechanisms. To ensure the
long-term coordinated development of WCNs, MAC protocol,
routing protocol, broadcast transmission, and data collection
need to be optimized to adapt to the charging process.

To the best of our knowledge, we are the first to conduct
a comprehensive review of state-of-the-art techniques for

TABLE I
LIST OF ABBREVIATIONS

Abbreviations Meanings
BF-WSN Battery-free wireless sensor network
BS Base station
CH Cluster head
CPP Cluster point process
CSI Channel state information
CSMA/CA Carrier sense multiple access with collision avoidance
EM Electromagnetic wave
EMR Electromagnetic radiation
EV Electric vehicle
HAP Hybrid access point
ILP Integer linear programming
IRS Intelligent reflecting surface
LOS Line-of-sight
MC Mobile charger
MDK Multidimensional 0/1 knapsack
MEC Mobile edge computing
MIMO Multiple-input multiple-output
MISO Multiple-input single-output
ML Machine learning
mmWave Millimeter-wave
RFID Radio frequency identification
RHAP Relay-hybrid access point
SINR Signal-to-interference-and-noise ratio
SIR Signal-to-interference ratio
SNR Signal-to-noise ratio
TDMA Time division multiple access
UAV Unmanned aerial vehicle
WCN Wireless charger network
WISP Wireless identification and sensing platform
WPCN Wireless powered communication network
WPT Wireless power transfer
WRSN Wireless rechargeable sensor network
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Fig. 1. Main structure of this paper.

constructing effective and efficient WCNs. Our work sys-
tematically explores how to leverage static wireless chargers,
progressing from physical deployment and resource scheduling
to communication coordination, ultimately building a complete
and innovative network paradigm.

The key contributions are summarized as follows:
• We introduce the detailed framework of WCNs, including

network architecture, models, design issues, and typical
applications, to provide a foundational understanding of
how different components interact within WCNs.

• We conduct a comprehensive review of charger deploy-
ment schemes in WCNs, covering omnidirectional, di-
rectional, non-radiative, and heterogeneous deployments,
and explore how the physical placement of wireless
chargers affects charging coverage and performance.

• We present an in-depth study of charging scheduling
schemes in WCNs, addressing power control, time alloca-
tion, energy beamforming, and multi-resource scheduling,
with a focus on optimizing the limited resources of
wireless chargers to improve charging efficiency.

• We review communication optimization schemes, focus-
ing on MAC protocols, routing protocols, broadcast trans-
mission, and data collection methods, to ensure seamless
integration and efficient coordination between charging
and communication processes within WCNs.

• Finally, we offer discussions on open issues and promis-
ing research directions for WCNs.

The remainder of this paper is organized following the
structure as shown in Fig. 1. Section II provides an overview
of related surveys. Section III offers an in-depth discussion
covering the architecture, charging models, design issues,
and typical applications of WCNs. Section IV presents a
thorough discussion of charger deployment schemes in WCNs.
Section V and Section VI review charging scheduling schemes
and communication optimization schemes in WCNs, respec-



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 3

TABLE II
COMPARISON OF OUR SURVEY WITH EXISTING SURVEYS

(‘CDS’: CHARGER DEPLOYMENT SCHEMES; ‘CSS’: CHARGING SCHEDULING SCHEMES;‘COS’: COMMUNICATION OPTIMIZATION SCHEMES;
‘C’: THE TOPIC IS FULLY COVERED; ‘P’: THE TOPIC IS PARTIALLY COVERED; AND ‘N’: THE TOPIC IS NOT COVERED)

Networks Network features Charging models CDS CSS COS

WRSNs (e.g., [17]–[21]) Power the network with a dynamic wireless charger. C N N N
BF-WSNs (e.g., [22]–[24]) Equip devices with a capacitor for indefinite energy storage. N N N C
WPCNs (e.g., [25]–[29]) Harness wireless chargers to facilitate energy and information transmission to/from devices. N N P P

WCNs (our paper) Employ wireless chargers to provide a sustained and stable power supply, ensuring the
permanent operation of the network. C C C C

tively. Section VII outlines open issues and future research
directions, Section VIII concludes this paper. For convenience,
abbreviations used in this paper are listed in Table I.

II. RELATED SURVEYS

With the rapid advancement of WPT technology,
several network paradigms incorporating WPT have
emerged, including Wireless Rechargeable Sensor Networks
(WRSNs) [17]–[21], Battery-Free Wireless Sensor Networks
(BF-WSNs) [22]–[24], and Wireless Powered Communication
Networks (WPCNs) [25]–[29]. Table II compares existing
surveys on WRSNs, BF-WSNs, WPCNs, and WCNs.

We begin by reviewing survey papers on the WRSN
paradigm, where Mobile Chargers (MCs) equipped with WPT
technology wirelessly charge devices in a designated order.
Earlier in 2015, Hu et al. [17] provided a comprehensive
review of charging schemes in WRSNs from six dimen-
sions, covering the number of MC, charging range, charging
capability, service station deployment scheme, optimization
objectives, and charging cycle. In 2018, Prakash et al. [18]
conducted a detailed investigation of WRSNs, offering a
comparison of employed techniques and analyzing the advan-
tages and disadvantages of the relevant research. Subsequently,
Fan et al. [19] categorized and compared existing periodic
charging scheduling schemes, evaluating them from six per-
spectives: the number of MCs, driving speed, charging range,
charging power, driving path, and charging cycle. In 2022,
Kaswan et al. [20] provided a detailed survey of mobile charg-
ing techniques based on various design attributes and then
reviewed the literature by categorizing it into periodic and on-
demand charging techniques. Qureshi et al. [21] defined basic
terms of WRSNs and summarized mobile charging schemes
according to charging cycle, scheduling scheme, charging
range, charging mode, and the number of MCs. Existing
survey articles on WRSN mainly focus on the charging path
planning of MCs. While these studies describe radiative and
non-radiative charging models, they do not consider the impact
of wave interference, as well as the deployment, charging
scheduling, and communication of fixed chargers.

Some survey papers focus on the BF-WSN paradigm, in
which each device is equipped with a capacitor capable of
indefinite charging for energy storage, and the energy supply
of the network is unlimited. In 2021, Khalid et al. [22]
investigated various components of wireless sensor devices in
BF-WSNs. Their research surveys five main topologies used to
transform simple Radio Frequency Identification (RFID) chips
into battery-free wireless sensor devices, along with recent
implementations of these topologies. Subsequently, Cai et
al. [23] reviewed aspects of energy replenishment scheduling,

communication and networking, data acquisition, and appli-
cations in BF-WSNs. In 2023, Jiang et al. [24] conducted a
comprehensive survey of backscatter communication-enabled
BF-WSNs. The study introduces the hardware architecture
and key components of these networks and discusses four
fundamental issues: link performance enhancement, multi-
device concurrent transmission, security guarantee, and the
interplay between BF-WSNs and services. Unlike the focus on
optimizing charging schemes in WCNs, surveys on BF-WSNs
emphasize enhancing the composition and communication of
battery-free sensors. Due to the absence of external energy
supplies, there has been little exploration of charging models,
charger deployment schemes, or charging scheduling schemes.

Several contributions survey different issues in the WPCN
paradigm, in which Hybrid Access Points (HAPs) support
the energy/information transmission to/from wireless devices.
In 2016, Bi et al. [25] provided an overview of the key
networking structures of WPCNs and performance-enhancing
techniques, which cover energy beamforming, joint commu-
nication and energy scheduling, wireless powered cooperative
communication, and multi-node cooperation. Niyato et al. [26]
reviewed performance improvement methods in WPCNs from
three aspects: backscatter communications with energy har-
vesting, duty-cycle based energy management, and transceiver
design for self-sustainable communications. In 2020, large-
scale WPCNs are discussed in [27], specifically focusing on
signal processing aspects, network design issues, and efficient
communication techniques. In 2022, Huda et al. [28] con-
ducted an in-depth survey on WPCNs in terms of critical
design parameters and performance factors. In 2023, Wang
et al. [29] provided a comprehensive review of WPCNs,
integrating Mobile Edge Computing (MEC) and WPT tech-
nologies, and addressing computation offloading and resource
allocation. In WPCNs, wireless chargers typically handle both
power and information transmission. Existing research primar-
ily focuses on coordinating these two functions, so relevant
surveys emphasize communication optimization and certain
charging scheduling schemes, with less focus on charging
models and the deployment of dedicated chargers.

In summary, although extensive surveys have been con-
ducted in the paradigms of WRSNs, BF-WSNs, and WPCNs,
there are still gaps in the optimization of fixed charging.
Specifically, the impact of wave interference on charging mod-
els, the deployment of fixed chargers, and charging scheduling
have not been fully explored. This paper integrates compre-
hensive charging models, charger deployment schemes, charg-
ing scheduling strategies, and communication optimization
schemes, offering a systematic explanation of WCNs from
deployment to integration with existing networks.
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Fig. 2. WCN infrastructure architecture and basic components of wireless chargers and rechargeable devices.

III. FRAMEWORK OF WCNS

This section introduces the framework of WCNs. Specif-
ically, we first present the network architecture and basic
components of WCNs. Then, we give various charging models
and corresponding energy distributions. Next, we discuss the
design issues of WCNs, encompassing aspects such as charger
deployment, charging scheduling, and communication opti-
mization. Finally, we highlight typical applications of WCNs.

A. Architecture of WCNs

A Wireless Charger Network (WCN) consists of a group
of wireless chargers, denoted as S = {s1, s2, ..., sn}. These
chargers are randomly or manually deployed in proximity to
rechargeable devices, denoted as O = {o1, o2, ..., om}, to
support the wireless charging process. Multiple chargers and
Base Stations (BSs) can communicate wirelessly to exchange
information. The upper portion of Fig. 2 depicts the network
architecture of WCNs, while the lower portion provides de-
tailed views of the basic components of chargers and devices.

The basic components of a WCN are as follows.
Wireless Chargers: the architecture of wireless chargers

comprises five key components: the power supply unit, power
management unit, power transmission unit, processing unit,
and communication unit. The power supply unit serves as the
charger’s energy source, delivering power to the remaining
components [1]. The power management unit manages the dis-
tribution of power among various components of the charger.
The power transmission unit generates an electromagnetic
field, facilitated by a coil [30] or an antenna [31], to enable
the wireless power transfer to devices. Additionally, the pro-
cessing unit is employed for localized information processing,
while the communication unit facilitates wireless information
transfer (WIT) with other components within the network.

Rechargeable Devices: similar to wireless chargers, a
rechargeable device also has an energy harvesting unit, power
management unit, processing unit, and communication unit.
Additionally, it has an energy storage unit, a sensing unit,
and in certain cases, a Global Positioning System (GPS) and
a mobilizer unit. Rechargeable devices extract power from
the electromagnetic field using the energy harvesting unit,
typically a coil or antenna that corresponds to the charger. The
power management unit strategically allocates the harvested

energy to the energy storage unit (e.g., lithium-ion and alkaline
rechargeable batteries [32]), while also supporting various
device functions such as sensing, computing, communication,
positioning, and mobility. Within the network, these recharge-
able devices collect essential information through the sensing
unit, perform localized computations via the processing unit,
and communicate either among each other or directly to
external BSs. For mobile rechargeable devices, it is essential
to include GPS and mobilizer units to support mobility.

Base Stations (BSs): BSs are responsible for collecting
sensing data and managing the network. Each BS has high pro-
cessing capability and network data storage function, allowing
it to maintain all information about rechargeable devices
and wireless chargers, including their status, location, and
energy consumption. This information is crucial for accurately
modeling the power transmission process and devising ap-
propriate charging schemes. In certain specific WCNs, BSs
may also have WPT technology, enabling them to function
as multifunctional chargers that can transmit both information
and power to rechargeable devices [33].

In WCNs, the interaction between wireless chargers,
rechargeable devices, and BSs forms the basis for efficient
power and information transmission. Wireless chargers trans-
mit power wirelessly to rechargeable devices, which cap-
ture and store it to support functions like communication,
sensing, and mobility. BSs interact with chargers and de-
vices through wireless information transmission to coordinate
charging schemes and information transmission. Consequently,
WCNs can provide a stable, continuous, and controllable
energy supply for a large number of devices without the need
for wired connections. This ensures uninterrupted operation,
improves energy efficiency, and enhances the overall flexibility
and scalability of the network.

B. Models in WCNs

In WCNs, as shown in Fig. 2, energy is transferred from the
charger to the rechargeable device, where it is harvested by
the energy harvesting unit and stored to support functions such
as sensing and communication. This process involves three
models: the charging model, energy harvesting model, and
energy consumption model. Firstly, the charging model varies
depending on the WPT technology used. WPT technologies
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TABLE III
COMPARISON OF DIFFERENT WIRELESS CHARGING METHODS

Methods Advantages Drawbacks

R
ad

ia
tiv

e

Omni-
directional

Wide charging coverage;
supports multiple devices.

Lower charging efficiency;
potential safety concerns.

Directional
Higher efficiency than
omnidirectional;
targeted energy transfer.

Limited charging angle;
potential safety concerns.

N
on

-r
ad

ia
tiv

e Inductive
Coupling

High charging efficiency;
widely used in
consumer electronics.

Short charging range;
requires physical proximity;

Magnetic
Resonance

Longer range than inductive;
supports multi-hop charging.

Complex implementation;
needs specific resonant
frequencies.

are broadly categorized into two types: radiative and non-
radiative techniques. Radiative techniques can be subcatego-
rized into omnidirectional and directional techniques, both
work on the far field, where the electromagnetic field generated
is predominant at greater distances. In contrast, non-radiative
techniques can be further divided into inductive coupling
and magnetic resonance coupling, both work on the near
field, where the generated electromagnetic field dominates
the area close to the wireless charger or rechargeable device.
Table III summarizes the various wireless charging methods
and compares their advantages and drawbacks.

1) Radiative Charging Models: for radiative technologies,
power is transferred via electromagnetic waves, encompass-
ing various types such as infrared, X-ray, and Radio Fre-
quency (RF). Due to safety considerations, RF waves are
commonly used. Recent commercial RF-based wireless charg-
ers, including the Cota system [34], PRIMOVE [35], and
Powercast transmitter [36], exemplify this trend. Fig. 3 il-
lustrates the power transfer process. On the charger side, a
DC/RF converter module transforms the direct current (DC)
voltage from an external source to RF power. The power is
then transmitted via a transmit antenna, radiating RF waves
through free space in a specified radiation pattern, enabling
low-power charging over distances of up to several meters.
The rechargeable device captures these RF waves through its
receive antenna and converts them into storable power in the
rechargeable battery by a power processing unit.

Radiative chargers are designed with either an omnidirec-
tional transmit antenna, emitting RF waves uniformly in all
directions, or a directional antenna, focusing the RF waves in
a specific direction. For omnidirectional chargers, the power
density is uniform in all directions, resulting in a spherical
charging area. According to the widely accepted empirical
charging model described in [31], and depicted in Fig. 4.
Hence, the omnidirectional charging model is

Pr(d) =
PtGtGrη

Lp

(
λ

4π(d+ β)

)2

, (1)

where d is the distance between the charger and device, Pt

refers to the transmission power of the charger, Gt and Gr
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represent the transmit gain and the receive gain, respectively,
η is the rectifier efficiency, Lp is the polarization loss, λ is the
average wavelength, and β is a parameter to adjust the Friis’s
free space equation for the short distance transmission.

Notably, when the rechargeable device is too far away
from the charge, i.e., d>D, it cannot receive non-negligible
energy. The received power transmitted from omnidirectional
charger si to rechargeable device oj is simplified to

Pr(si, oj) =

{
α

(||sioj ||+β)2 , 0 ≤ ||sioj || ≤ D,

0, otherwise,
(2)

where α = GtGrη
Lp

( λ
4π )

2Pt (for simplicity), α, β, and D are
constants determined by the experimental environment and the
hardware parameters of wireless chargers. Note that charging
power varies nonlinearly with distance in the continuous space.

For directional chargers, power density varies with direc-
tion, meaning the received power by the rechargeable device
depends on both distance and angle. As illustrated in Fig. 5,
the charging regions of the directional charger and device are
modeled as sectors with angles As and Ao and radius D. The
device only receives power when both it and the charger are
within each other’s charging areas, as seen with device oj ,
whereas device ok cannot receive energy. Let −→rθi and −→rϕj

denote the orientations of the charger and device, respectively,
the received power is expressed as follows [37]:

Pr(si, θi, oj , ϕj) =


α

(||sioj ||+β)2 , 0 ≤ ||sioj || ≤ D,
−−→sioj · −→rθi − (||sioj ||cos(As/2),

and −−→ojsi · −→rϕj
− (||ojsi||cos(Ao/2),

0, otherwise.
(3)

Fig. 6 illustrates simulated radiation patterns of both omni-
directional and directional chargers, showcasing the distinct
charging areas characteristic of each type. Omnidirectional
chargers enable rechargeable devices to receive energy from

(a) Omnidirectional charger. (b) Directional charger.

Fig. 6. Simulated charging power heatmaps: omnidirectional charger vs
directional charger. Simulated results are based on (a) α = 2.175, β = 0.1,
and (b) α = 3.893, β = 0.1.
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all directions. However, they offer lower power density and
shorter charging distances, making them more suitable for
dense, small-scale networks. In contrast, directional chargers
concentrate energy in specific directions, enabling higher
power density and longer charging distances, ideal for sparse,
large-scale networks. As shown in Fig. 6b, the charging power
of directional chargers, unlike the omnidirectional chargers, is
anisotropic. Besides the energy beam with the highest power
intensity, known as the main lobe, there are additional and
undesired energy beams in other directions, referred to as side
lobes. These side lobes, resulting from interference during the
antenna design process, are unavoidable [38], [39].

For radiative chargers, RF waves propagate in the network,
and the presence of overlapping areas is inevitable. Within
these overlapping areas, rechargeable devices can be charged
by multiple chargers simultaneously. To simplify the calcula-
tion, some studies assume that the accumulated power received
by rechargeable devices is additive [8], [31]. In fact, due to
wave interference, the cumulative power is determined by the
amplitude and phase of the waves emitted by multiple charg-
ers [40], [41]. Specifically, constructive interference occurs
when the emitted waves are in phase, resulting in a combined
wave with increased power intensity. Conversely, destructive
interference happens when the waves are out of phase, leading
to a combined wave with reduced power intensity. The RF
wave arriving at device oj from charger si can be expressed
in the form of a sinusoidal wave:

A(t) =
A0

d̂ij
cos

(
2πft− 2π

λ
dij

)
, (4)

where A0 and f are the amplitude and frequency of RF waves,
respectively, d̂ij =

dij+β√
α

is the attenuation factor for wave
propagation, and α = GtGrη

Lp
( λ
4π )

2.
When multiple chargers charge device oj simultaneously,

the combined wave arrives at oj can be written as

A(t) =
∑n

j=1

A

d̂ij
cos

(
2πft− 2π

λ
dij

)
, (5)

where A = [mA2
0 + 2A2

0

∑m
j>k

∑m
k=1 cos

(
2π

dij−dik

λ

)
]
1
2 .

Hence, the cumulative power from multiple chargers at the
device oj is

Pr(oj) =

n∑
j=1

Pr(si, oj)

=
A2

0

2

 n∑
j=1

1

d̂ij
2 +

n∑
j=1

n∑
k>i

2cos(2π
dij−dik

λ )

d̂ij d̂ik

 .

(6)

Fig. 7 depicts the simulated power distribution emitted by
the four omnidirectional chargers according to Eq. (6). It can
be observed that the network displays alternating light (i.e.,
constructive interference) regions and dark (i.e., destructive in-
terference) regions of different shapes and sizes. Within these
overlapping areas, even a slight shift in a device’s location
can lead to significant changes in the received charging power.
Consequently, this complexity necessitates more sophisticated
charging scheme designs. Additionally, the interference phe-
nomenon caused by directional chargers is explored in [42].
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Fig. 7. Charging power heatmap of four omnidirectional chargers.

In this study, directional chargers are deployed within the
network and their directionals are freely adjustable. Fig. 8
illustrates how charging power distribution changes when the
orientations of directional chargers are adjusted, disregarding
the anisotropy of their power [43]. The directivity of these
chargers clearly has a significant impact on power distribution.

Radiative Charging Standardization: beyond the charging
models discussed, standardization plays a crucial role in ad-
vancing WCNs. For radiative charging, particularly using RF
technology, the focus is primarily on Electromagnetic Radia-
tion (EMR) safety and equipment authorization regulations.

• EMR Safety: Radiative wireless charging relies on elec-
tromagnetic waves to transfer power, which inevitably im-
pacts the surrounding environment. High EMR exposure
is recognized as a potential threat to human health, with
risks such as tissue damage, cardiovascular disease, and
brain tumors [44]. To mitigate these risks, standards like
the IEEE C95.1 [45] and the International Commission
on Non-Ionizing Radiation Protection (ICNIRP) guide-
lines [46] set limits on EMR exposure.

• Equipment Authorization: As early as 2017, the Federal
Communications Commission (FCC) certified the first
mid-field RF wireless power transmitter, followed by
the certification of a wireless charging system using
both near-field and far-field methods in 2021. Currently,
wireless chargers operating at frequencies above 9 kHz
must comply with FCC’s Part 15 and/or Part 18 regula-
tions [47]. These regulations cover the emission power of
devices, operational frequency ranges, and EMR exposure
limits when in close proximity to the human body.
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Fig. 8. Charging power heatmaps under different chargers’ directions.
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Fig. 9. The basic principle of a non-radiative charging system.

2) Non-radiative Charging Models: for non-radiative tech-
nologies, power is transmitted over short distances through
magnetic field coupling between two coils, as shown in Fig. 9.
The most widely applied technologies corresponding to this
classification are inductive coupling and magnetic resonant
coupling. Laboratory wireless chargers such as MagMIMO
[48] and WiTricity [30], serve as examples of these technolo-
gies, employing inductive coupling and magnetic resonance
coupling, respectively. Inductive coupling occurs when an
alternating current in the transmitter coil generates a varying
magnetic field, inducing a voltage across the receiver coil
within the field. Optimal charging performance is achieved
when the charger is close to the rechargeable device (typically
within a few centimeters) and the coils are precisely aligned.
In comparison, magnetic resonance coupling relies on align-
ing coils at the same resonant frequency, creating a strong
non-radiative magnetic resonance induction. This allows for
high power transfer efficiency over longer distances (typically
within tens of centimeters), with multi-hop power transmission
achievable using resonant repeaters [49]. Operating in the near
field, non-radiative technologies produce a magnetic field that
dominates close to the charger or device, resulting in higher
charging efficiency.

The received power can be expressed as [13]:

Pr(d) =

{
PtQtQrηtηrk

2(d), 0 ≤ d ≤ D,

0, otherwise,
(7)

where Qt and Qr represent the quality factors of the charger
and device, respectively, while ηt and ηr denote their respec-
tive efficiencies. Additionally, k2(d) refers to the coupling
coefficient between the transmit and receive coils. The closer
and more accurately aligned the coils are, the higher the
coupling coefficient and power transfer efficiency.

The coupling coefficient k is determined by the mutual
inductance M and the self-inductance of transmit coil Lt and
receive coils Lr, as shown in the following expression:

k =
M√
LtLr

. (8)

Given the radii of the transmit and receive coils (rt and
rr) and the distance d between them, the coupling coefficient,
which reflects the alignment and distance between coils, can
also be described by the following equation:

k2(d) =
r3t r

3
rπ

2

(d2 + r2t )
3
. (9)

Consequently, the received power for non-radiative charg-
ing, incorporating the coupling coefficient, is calculated as

Pr(d) =

{
PtQtQrηtηr

r3t r
3
rπ

2

(d2+r2t )
3 , 0 ≤ d ≤ D,

0, otherwise.
(10)

Non-radiative Charging Standardization: in addition to ad-
hering to EMR safety and equipment authorization regula-
tions, the commercialization and widespread adoption of non-
radiative charging technologies have led to the development
of wireless charging standards like Qi [2], Rezence [50],
PMA [51], and AirFuel Resonant [52] to ensure compatibility.

• Qi: developed by the WPC, Qi is the most widely
adopted standard for inductive charging, commonly used
in portable devices. Qi supports short-range charging,
typically within a few centimeters, ensuring compatibility
across various devices from different manufacturers.

• Rezence: initially developed by the Alliance for Wireless
Power (A4WP) and now part of the AirFuel Alliance,
Rezence uses magnetic resonance to provide greater flexi-
bility in device positioning, support charging over several
centimeters, and support multiple devices simultaneously.

• PMA: the Power Matters Alliance (PMA), a global non-
profit organization, focused on developing standards and
protocols for inductive charging similar to Qi, aiming to
advance wireless power solutions for mobile devices.

• AirFuel Resonant: formed by the merger of PMA and
Rezence, the AirFuel Alliance focuses on resonant charg-
ing technology, enabling longer charging distances than
inductive systems like Qi, and supporting multiple de-
vices without requiring precise alignment.

3) Energy Harvesting and Consumption Models: in WCNs,
rechargeable devices capture charging energy via an energy
harvesting unit. The maximum energy harvested by a device oi
is constrained by its battery capacity bi. Let the corresponding
charging time of the device be ti, then the harvested energy
of device oi is given by

Eh(oi) =

{
Pr(oi)ti, Eres

i + Pr(oi)ti ≤ bi,

bi − Eres
i , otherwise,

(11)

where Eres
i is the residual energy of rechargeable device oi

before charging, i.e., 0 ≤ Eres
i ≤ bi.

When rechargeable devices have harvested a certain amount
of energy, they perform sensing, processing, and communica-
tion tasks. Assuming that each device oi produces its sensing
data at a constant rate Ri (in b/s), it then transmits the
processed data to the BS via one-hop or multi-hop communica-
tion. Let the data transmission rate from device oi to device oj
be fij , and to the BS be fiB , respectively. Thus, the following
flow conservation holds at each device oi:∑ok ̸=oi

ok∈O
fki +Ri =

∑oj ̸=oi

oj∈O
fij + fiB . (12)

For rechargeable devices, we assume that communication is
the main source of the device’s energy consumption. Let Cij

and CiB represent the energy consumption rate for transferring
one unit of data to device oi and the BS, respectively, and are
given by [53]

Cij = β1 + β2d
α
ij , (13)

CiB = β1 + β2d
α
iB , (14)

where β1 and β2 are constants, α is the path loss index, and
dij and diB are the distance from device oi to device oj and
the BS, respectively. Notably, the energy consumption rate is
influenced by the distance raised to the power of α.
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Fig. 10. Taxonomy of design issues.

Similarly, let ρ represent the energy consumption rate for
receiving one unit of data. Then, the total energy consumption
rate for both transmission and reception at device oi is

Ec(oi) = ρ
∑ok ̸=oi

ok∈O
fki +

∑oj ̸=oi

oj∈O
Cijfij + CiBfiB . (15)

C. Design Issues in WCNs
This section outlines the fundamental design issues in tran-

sitioning conventional battery-powered networks into efficient
and effective WCNs. These considerations are categorized into
three main aspects: charger deployment, charging scheduling,
and communication optimization. This categorization reflects
the essential steps in establishing WCNs—beginning with the
physical deployment of charging infrastructure, progressing
through the efficient management of charging processes, and
culminating in optimizing communication protocols that sup-
port and enhance overall network functionality. Each aspect is
crucial for ensuring the seamless operation and performance
of WCNs, as illustrated in Fig. 10 and detailed below.

1) Charger Deployment Schemes (CDS): strategic deploy-
ment of wireless chargers is fundamental to constructing
WCNs, as it directly affects charging coverage [31], effi-
ciency [54], and network connectivity [55]. Deployment strate-
gies vary depending on charging models, considering factors
such as coverage area, efficiency, and power distribution.
These strategies can be categorized into omnidirectional, di-
rectional, non-radiative, and heterogeneous deployments based
on the type of chargers used. Omnidirectional and directional
deployment schemes focus on reducing the number of charg-
ers [31], maximizing charging utility [37], [56], or achieving
multi-objective optimization [11]. Given their radiation prop-
erties, EMR safety [57], [58] and wave interference [40], [41]
are also key considerations during deployment. Non-radiative
charger deployment schemes prioritize ensuring a continuous
energy supply for critical devices through single- or multi-
hop power transmission [59], [60]. Heterogeneous charger

deployments, as studied in [61], leverage the characteristics
of different charger types through collaborative strategies to
optimize performance.

Fundamental problem of CDS

Given a set of rechargeable devices, how can we determine
the deployment schemes for the chargers (including charger
location and orientation) to

• minimize the number of chargers, maximize charging
utility, or achieve multi-objective optimization.

• subject to constraints such as coverage quantity, energy
provision, and radiation properties.

2) Charging Scheduling Schemes (CSS): effectively schedul-
ing the limited resources of wireless chargers is crucial for the
sustainable operation of WCNs, including optimizing power
control, time allocation, energy beamforming, and multi-
resource coordination. Power control schemes focus on en-
hancing charging efficiency by adjusting the power received by
devices [62], [63] or the charging area of chargers [64], [65].
Moreover, multifunctional chargers that handle both power
and information transmission require strategies to balance
these functions [66]. Time allocation schemes typically involve
allocating charging duration [15], scheduling power trans-
mission [67], [68], and coordinating power and information
transfer [69] to either maximize efficiency or minimize energy
consumption. Energy beamforming maximizes transmission
efficiency by focusing power delivery on specific targets [10],
[70]. Multi-resource scheduling further optimizes multiple
objectives by coordinating resource allocation [71].

Fundamental problem of CSS

Given a set of rechargeable devices and wireless chargers,
how can we determine the scheduling schemes for the charg-
ers (including determining power control, time allocation,
and energy beamforming) to

• maximize charging efficiency and fairness among de-
vices, minimize energy consumption, or achieve multi-
objective optimization.

• subject to constraints such as power budget, time du-
ration, and energy provision.

3) Communication Optimization Schemes (COS): beyond
the above schemes focusing on charging performance opti-
mization, the researchers also explored communication op-
timization schemes in WCNs, including optimizing MAC
protocols, routing protocols, broadcast transmission, and data
collection. Among them, the MAC protocol controls access
to shared wireless media and coordinates power transmission
with communication processes [72], [73]. Routing protocol
optimization aims to identify the best route to transmit data
from source to destination, considering devices with addi-
tional power supply [74]. Broadcast transmission optimization
focuses on enhancing transmission reliability [75], [76] and
reducing broadcast latency [77], while ensuring collision-free
transmission and maintaining charging performance. Addition-
ally, it is crucial to consider how to utilize mobile [78] or fixed
sinks [79] to collect data, ensuring timely data collection.
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Fundamental problem of COS

Given a set of rechargeable devices and wireless chargers,
how can we optimize the communication schemes of the net-
work (including MAC protocol, routing protocol, broadcast
transmission, and data collection) to

• maximize transmission reliability and throughput, min-
imize latency, or achieve multi-objective optimization.

• subject to constraints such as energy conservation,
flow conservation, collision-free transmission, and tol-
erant delay.

D. Typical Applications of WCNs

WCNs provide a contactless, continuous, and controllable
energy supply, seamlessly integrating into our daily lives. This
section outlines typical applications of WCNs, including wire-
less sensors, medical implants, portable electronics, Unmanned
Aerial Vehicles (UAVs), home appliances, and Electric Vehi-
cles (EVs), organized by increasing power requirements.

1) Wireless Sensors: wireless sensors, designed for envi-
ronmental data sensing, play pivotal roles in industrial au-
tomation, environmental monitoring, and military surveillance.
These sensors have low charging power requirements, typically
ranging from microwatts to milliwatts, making them ideal for
large-scale charging via radiated chargers such as Powercast’s
transmitters [36] and Energous’s WattUp [80]. The charging
durations are relatively short, from minutes to a few hours.
WCNs can remotely charge sensors in vast or hard-to-reach
areas like oceans, forests, or bridges, ensuring a stable energy
supply for real-time monitoring and rapid response [81]–[83].
Due to the limitation of the charging efficiency and radiation
safety of the radiation charger, higher requirements are put for-
ward for the deployment and scheduling strategy of its WCNs
to achieve full device coverage and maintain EMR safety.

2) Medical Implants: medical implants are devices im-
planted in the patient’s body to monitor, treat, or aid phys-
iological functions. Due to safety concerns, their charging
power is rigorously restricted to milliwatt levels, typically
using non-radiated chargers like the prototype developed by
Fan et al [10] for precise, localized charging. Integration
with WCNs effectively avoids potential risks associated with
surgical battery replacements [84]. Additionally, the WCN can
monitor medical implants wirelessly, providing doctors with
real-time data for remote monitoring and adjustments to treat-
ment plans. Real-time monitoring and remote management are
crucial for patients with chronic diseases or those requiring
long-term monitoring [85]. Since the implants are situated
within the human body, WCNs must deliver energy with
precise transmission angles and intensity to ensure sufficient
power while preventing overheating of surrounding tissues.

3) Portable Electronics: portable electronic devices, such as
smartphones, tablets, and Bluetooth headphones, which users
frequently carry, typically require charging powers ranging
from several watts to tens of watts. Non-radiative chargers
using inductive coupling technology, such as Duracell’s Pow-
ermat [86], Google’s Nexus Wireless Charger [87], and Sam-
sung’s Wireless Charger Duo Pad [88], efficiently meet these

needs. Devices must remain on the charging pads for several
hours to fully charge. In WCNs, these devices can achieve
continuous power supply, eliminating concerns about bat-
tery depletion and greatly improving travel convenience [15].
WCNs also remove the need for cables and are compatible
with various portable electronics, providing a cleaner, more
organized service environment [89]. Despite these advantages,
the short-range nature of non-radiative chargers imposes spa-
tial limitations on device placement.

4) UAVs: UAVs are designed for aerial photography, com-
munication, and other tasks, requiring charging power ranging
from tens to hundreds of watts. Non-radiated chargers using
resonant coupling, capable of providing longer charging dis-
tances and higher charging efficiency, are ideally suited to meet
these requirements. Examples include Powermat’s wireless
charging solution [86], Bumblebee Power [90], and WiBotic’s
PowerPad Pro [91]. UAVs can either dock with chargers or
charge mid-air, completing the process within a few hours.
In WCNs, UAVs do not have to land frequently to replace
their batteries. This enables them to perform missions more
efficiently and have longer flight ranges [92], [93]. In addition,
when a natural disaster strikes, those UAVs can be easily and
quickly deployed to establish communication links. Through
wireless charging technology, these UAVs ensure the continu-
ous operation of communication links, effectively facilitating
rescue missions [94], [95]. However, current wireless charging
solutions for UAVs are limited by range and charging time,
restricting their operational flexibility.

5) Home Appliances: with rising demand for convenience,
WPT technology has found extensive applications in home
appliances, including LED TVs, kitchen appliances, and light-
ing systems. Non-radiated chargers using inductive coupling,
like Fulton’s eCoupled [96] and Semtech’s LinkCharge [97],
offer the highest charging efficiency and can meet power
requirements of up to several kilowatts. The elimination of
wires not only significantly enhances the flexibility of placing
home appliances but also contributes to a more organized and
tidy appearance throughout the entire home [98]. Furthermore,
WCNs turn ordinary appliances into smart appliances, enhanc-
ing their control and safety features [99]. However, the high
energy consumption of home appliances themselves continues
to limit the widespread adoption of WCNs.

6) EVs: certain EVs, e-bikes, and e-scooters are now
wireless charging-capable, demanding power from tens of
watts to tens of kilowatts. Products like WiTricity’s Wireless
Charging System [100], Qualcomm’s Halo WEVC [101], and
Evatran’s Plugless Power [102] fulfill these needs using large
transmission coils, with charging times of several hours. The
emergence of WCNs enables EVs to eliminate the inconve-
nience of wires, with no plugs or ports worn or damaged by
repeated connections to chargers. This advancement ensures
safe charging, even in wet environments [16]. Moreover, the
establishment of two-way communication between EVs and
wireless chargers enables seamless integration of intelligent
functions, such as automatic parking payments and repair
reports [103]. However, the widespread adoption of WCNs
is hindered by several challenges, including the high cost



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 10

of infrastructure deployment and the need for standardization
across different vehicle manufacturers.

By introducing the architecture of WCNs, we clarify the
network structure and basic components. The explanation of
models reveals the energy conversion processes within WCNs,
while the discussion of design issues highlights key challenges
in network construction. Typical applications demonstrate the
practical value of WCNs, establishing a solid framework for
understanding their complexities and real-world applications.

IV. CHARGER DEPLOYMENT SCHEMES

Charger deployment schemes are fundamental to con-
structing WCNs, directly influencing the network’s charging
coverage and efficiency. Due to the distinct characteristics
of different wireless charger types, customized optimization
strategies are essential for effective deployment. To meet
diverse wireless charging requirements, charger deployment
schemes can be classified into four main types: 1) omnidirec-
tional charger deployment, where electromagnetic waves are
broadcast equally in all directions, creating a circular charging
area suitable for simultaneously providing energy to multiple
devices within a wide coverage (Sec. IV.A); 2) directional
charger deployment, which focuses energy in a specific direc-
tion using beamforming to form a sector-shaped charging area,
ideal for scenarios requiring concentrated power delivery and
enhanced energy efficiency for targeted devices (Sec. IV.B);
3) non-radiative charger deployment, characterized by short-
range but high-efficiency energy transfer, making it suitable
for point-to-point charging scenarios where precision is crucial
(Sec. IV.C); and 4) heterogeneous charger deployment, which
combines different types of wireless chargers to offer flexible
and efficient charging services, meeting diverse device needs
within the network (Sec. IV.D).

A. Omnidirectional Charger Deployment

In WCNs, the problem of omnidirectional charger deploy-
ment is how to determine the locations and the numbers of
omnidirectional chargers to meet various objectives. These
objectives include minimizing deployment costs, maximizing
charging utility, achieving multi-objective optimization, and
enhancing charging performance by considering device mo-
bility and charger radiation characteristics [11], [31], [31],
[40], [41], [44], [54], [58], [61]–[63], [104]–[129]. For better
comprehension, Fig. 11 illustrates an omnidirectional charger
deployment scheme. Additionally, Table IV presents a compre-
hensive overview of related studies, detailing their comparison
in terms of objectives, constraints, device mobility, approaches,
performance metrics, and Evaluation Methods (EVM).

1) Deployment Cost Minimization: in the past decade,
extensive efforts [31], [104]–[111] have been made to reduce
deployment costs for recharging devices. Chargers are usually
much more expensive than rechargeable devices, about 100
times the price difference [31], so it is a great concern to
cover more rechargeable devices with as few chargers and
deployment costs as possible.

In WCNs, He et al. [31] utilized WISP [12] and commercial
off-the-shelf omnidirectional chargers to achieve full coverage
of the network. Specifically, the WISP integrates devices with
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Fig. 11. Illustration of an omnidirectional charger deployment scheme
within a network comprising 50 rechargeable devices and 10 omnidirectional
chargers, each having an effective charging distance of 25dm.

sensing and computing components. These devices are capable
of harvesting energy from the charger and storing it in a
capacitor, which powers data sensing, logging, and computing.
To ensure that these devices can have continuous operation,
they considered a point provisioning problem, that is, how
to strategically deploy the minimum number of omnidirec-
tional chargers to ensure full coverage across the network.
To tackle this problem, they exploited the triangular deploy-
ment technique proposed in [130], providing the upper-bound
asymptotic approximation ratios of the proposed solutions to
the optimal ones.

Some papers [104]–[109] investigate the approach to partial
coverage, aiming to provide power to devices or selected
areas within the network, using a minimum number of om-
nidirectional chargers. Pang et al. [104] designed a partition
algorithm to reduce the number of chargers covering static
devices. The algorithm divides the entire spatial plane into
smaller partitions, solving them independently within each
partition, and then combines these solutions to create an
approximate solution for the original problem. Wan et al. [105]
proposed two algorithms to minimize the number of chargers,
by combining the solution of the Fermat point problem with
the advantages of the greedy algorithm. Subsequently, Wan et
al. [106] proposed a charger deployment algorithm based on
a greedy algorithm and position relationship between sensor
nodes, which utilizes the local search capability to avoid
exponential growth in the number of chargers (i.e., combinato-
rial explosion). Ding et al. [107] concentrated on minimizing
the deployment costs while satisfying the energy supply re-
quirements. They introduced an approximation algorithm that
greedily selects locations to maximize the energy supply.

Diverging from certain greedy-based techniques, Chien et
al. [108] proposed a metaheuristic-based algorithm to find
the optimization charger deployment. Notably, metaheuristic
algorithms typically demand more computational time for con-
vergence. In response to this challenge, they effectively tackled
it by pruning redundant solutions from the solution space,
thus significantly reducing the required computational time.
Simulation results show that the metaheuristic-based algorithm
can use a minimized number of chargers to cover all static
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TABLE IV
COMPARISON OF OMNIDIRECTIONAL CHARGER DEPLOYMENT SCHEMES

(‘EVM’: EVALUATION METHODS; ‘TA’: THEORETICAL ANALYSIS; ‘NS’: NUMERICAL SIMULATIONS; AND ‘FE’: FIELD EXPERIMENTS)

Paper Objectives Constraints Devices Approaches Performance metrics EVM

O
m

ni
di

re
ct

io
na

l
C

ha
rg

er
D

ep
lo

ym
en

t

[31] Minimum number of chargers Energy provision constraints Static;
mobile Approximation Approximation ratio;

average consumption power TA; NS

[104] Minimum number of chargers Coverage constraints Static Approximation Approximation ratio TA

[105],
[106] Minimum number of chargers Energy provision constraints Static Heuristic Number of chargers;

number of candidate chargers NS

[107] Minimum deployment cost Energy provision constraints Static Approximation Deployment cost TA; NS

[108] Minimum number of chargers Energy provision constraints Static Metaheuristic Number of chargers;
running time NS

[109] Minimum number of chargers Coverage constraint Static Heuristic Coverage quality NS

[124] Minimum number of chargers Energy provision constraints Static Heuristic;
metaheuristic Number of chargers NS

[110] Minimum number of chargers Energy provision constraints Static Heuristic Harvested power; convergence
rate; number of chargers TA; NS

[111] Minimum number of chargers Flow conservation constraints;
energy provision constraints Static Approximation Number of chargers;

harvested power TA; NS

[54] Maximum charging utility Coverage constraints Mobile Heuristic Survival rate NS

[112] Maximum charging utility Coverage constraints Mobile Approximation Coverage rate; coverage efficiency TA; NS

[62],
[63] Maximum charging utility Power budget constraints Static Approximation Coverage quality; running time TA; NS

[113] Maximum task utility Deployment cost budget Static Approximation Task utility; harvested power TA; NS

[11] O1: Maximum charging utility
O2: Maximum charging efficiency Coverage quantity constraint Static Metaheuristic Accuracy; convergence rate NS

[114]
O1: Maximum charging utility
O2: Maximum fairness
O2: Minimum number of chargers

Energy provision constraints Static Heuristic Average harvested power;
number of chargers NS

[115]

O1: Maximum harvested power
O2: Maximum fairness
O3: Minimum number of chargers
O4: Minimum energy consumption

Energy provision constraints Static Heuristic
Average harvested power;
number of chargers;
energy consumption

NS

[116] O1: Maximum network lifetime
O2: Minimum number of chargers Coverage constraints Mobile Heuristic Number of chargers;

survival rate NS

[117] Minimum number of chargers Energy provision constraints Mobile Heuristic;
metaheuristic Number of chargers NS

[118] Minimum number of chargers Non-overtime stay probability
requirement Mobile Heuristic;

metaheuristic
Number of chargers;
number of devices NS

[119] Assess the impact of mobility Energy provision constraints Mobile Bound
analysis Quality of energy provisioning TA; NS

[120] Minimum number of chargers Energy provision constraints Mobile Exact Number of chargers and discrete
grids; overhead of running NS

[121] Minimum number of chargers Non-overtime updating
probability requirement Mobile Heuristic;

metaheuristic
Number of chargers; success rate;
running time NS; FE

[44],
[58] Maximum charging utility EMR safety constraints;

charger location constraints Static Approximation Harvested power TA; NS; FE

[122],
[123] Maximum charging utility EMR safety constraints Static Approximation Harvested power TA; NS; FE

[125] Optimal distributions of power EMI impact constraints Static Distribution
fitting Harvested power NS; FE

[126] Maximum charging utility Energy provision constraints Static Heuristic Harvested power NS

[127] Maximum charging utility Placement constraints Static Heuristic Harvested power NS

[40],
[128] Maximum charging utility Deployment area constraint Static Approximation Harvested power TA; NS; FE

[129] Maximum charging utility Deployment area constraint Static Approximation Harvested power TA; NS; FE

devices in the indoor scenario. Arivudainambi et al. [109]
leveraged a Daubechies wavelet algorithm to identify the
optimal locations for omnidirectional chargers, with the goal
of minimizing the number of chargers. Additionally, they
took into account the improvement in device coverage by
optimizing the charger locations.

In addition to charger deployment, some papers [110], [111]
also consider BS deployment for data collection, with the
aim of balancing energy supply and information transmission.
In the case where the charger and BS are separated, the

study in [110] first proposes an efficient cluster-based greedy
algorithm to optimize the locations of chargers given fixed
BS locations. Then, a trial-and-error algorithm for BS location
optimization is proposed. On this basis, an effective method to
optimize the charger and BS location alternately is proposed.
In the case where each pair of the charger and BS are
co-located, an efficient greedy algorithm is proposed. Li et
al. [111] investigated a similar co-deployment problem, that
is, how to minimize the number of BSs and chargers given two
sets of candidate locations for placing them while satisfying
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flow constraints. To tackle this problem, they first transformed
the co-deployment problem into two max-flow sub-problems.
Then they designed a greedy-based algorithm for each sub-
problem with lnR

ϵ worst-case bound, where R is the required
data flow rate and ϵ is a small enough number. Further, they
designed an iterative algorithm that solves two subproblems
alternatively to achieve a near-optimal performance.

2) Charging Utility Maximization: the research [54], [62],
[63], [112], [113] on the omnidirectional charger deployment
also focuses on maximizing the charging utility, which can
refer to either the received power of device or the coverage
quantity. Charging utility is a crucial optimization metric that
can directly reflect the quality of the deployment scheme.

Some papers [54], [112] explore omnidirectional charger
deployment using a binary model, where charging utility only
indicates whether a device is covered, regardless of the power
received Chiu et al. [54] tackled the problem of optimizing
the charging utility for mobile devices. They first divided the
sensing area into different grids for deploying wireless charg-
ers. By analyzing human movement patterns, they identified
grid areas where mobile devices were more susceptible to
battery drain and placed chargers accordingly. This strategic
placement aimed to maximize the survival rate of devices,
ensuring they maintain sufficient power for uninterrupted
operation. Rao et al. [112] focused on urban environments,
where they deployed a limited number of chargers to maximize
charging utility, considering pre-known device trajectories and
bounded detouring costs. They addressed the problem using
a greedy algorithm with an approximation factor of (1−1/e)
and further improved it to account for detouring, achieving an
approximation factor of 1− 1/

√
e.

Other studies [62], [63], [113] quantify charging utility
based on the amount of power received by the device. For
instance, Zhang et al. [62] defined charging utility as being
proportional to the power received by a device, with a set
maximum received power acting as the upper limit. They
addressed a P3 problem, that is, given a set of candidate
locations for placing omnidirectional chargers, how to find
a charger deployment, and a corresponding power allocation
to maximize the charging utility, subject to a power budget.
Based on the greedy strategy, they proposed a (1− 1/e)-
approximation algorithm to solve the charger deployment
problem with a fixed power level, and an approximation
algorithm with a ratio of (1−1/e)

2L for the P3 problem, where L
is the maximum received power. In addition, the expansion of
the P3 problem via relaxing several assumptions is investigated
in [63], including mobile device, reconfiguration, and arbitrary
candidate locations. In addition, Ding et al. [113] investigated
the deployment of wireless chargers in a task-driven context,
proposing an approximation algorithm to maximize total task
utility within a limited deployment cost budget.

3) Multi-Objective Optimization: some works [11], [114]–
[116] study how to deploy omnidirectional chargers to
achieve multi-objective optimization. Different from the
single-objective optimization problem, multi-objective opti-
mization deployment needs to consider the relationship be-
tween multiple objectives, which may be competitive, cooper-
ative, tradeoff, and constrained.

Sun et al. [11] propose an improved firefly algorithm to
solve a multi-objective optimization problem to maximize
the number of devices covered by each charger and enhance
charging efficiency simultaneously. Ejaz et al. [114] studied
the charger deployment problem of software-defined WSNs.
The deployment problem is how to determine the optimal
location and minimum number of chargers to maximize the
charging energy and fair distribution of energy among all
devices. They proposed a utility function to represent a tradeoff
between the maximum energy charged in the network and the
fair distribution of energy. The optimization problem is formu-
lated and solved while satisfying the constraint on minimum
energy charged by each device. They also proposed an energy-
efficient scheduling scheme [115], which aims to reduce the
energy consumption of the chargers. In addressing the chal-
lenge of supplying power to non-deterministic mobile nodes,
the work in [116] introduces a multi-objective optimization
scheme based on a genetic algorithm to extend network life
and reduce deployment costs. The proposed scheme constructs
a D-dimensional vector, where D is the cardinality of the can-
didate set, to depict the candidate chargers. These candidates
are iteratively optimized, and a dual indicator selection method
is employed to determine the ultimate deployment solution.

4) Mobile Device Service: in WCNs, there are various
mobile devices (e.g., smart bracelets, medical devices, and
smart cameras) carried by mobile agents (e.g., humans and
animals). Unlike the deployment optimization of static devices,
it is critical to consider the mobility patterns and trajectories
of these mobile devices [31], [117]–[121].

Regarding the mobility trajectories of these mobile de-
vices, various studies adopt different assumptions. Some stud-
ies [117], [118] assume that specific stops exist along the
trajectory. In [117], mobile devices have a specific stay-move
behavior pattern, which is characterized by the distribution of
trajectory, stay points, and residence time. The optimization
problem is to minimize the number of chargers, subject to
the power non-outage probability requirement of the mobile
device. A similar problem is also explored in [118], that is,
given static task points and the directed trajectory of a mobile
device, how to deploy a minimum number of chargers and
receivers subject to the non-overtime stay probability require-
ment in all task points. The mobile device is assumed to update
information to the nearest receiver when it is fully charged
at each task point. Considering the interaction effect between
the deployment of chargers and receivers, greedy heuristic and
particle swarm optimization solutions are proposed.

Some studies [31], [119]–[121] assume that mobile devices
can stop at any point along the trajectory. He et al. [31]
employed the mobility of devices to reduce the number of
required chargers. As the power around the charger is higher
than the marginal part of the charging area, mobile devices
can harvest more energy in the power-rich areas. Assuming
a uniform distribution of devices, they proposed a triangular
deployment method to ensure the accumulated energy exceeds
a specified threshold over time. Dai et al. [119] investigated
the impact of mobility on energy provisioning. They provided
the upper and lower bounds of the expected duration that
mobile devices could sustain normal operation in single and
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multiple charger situations. Li et al. [120] tackled the problem
of deploying omnidirectional chargers on a two-dimensional
(2D) plane, considering the trajectory of mobile devices. They
discretized the continuous plane into grids and segmented
the corresponding trajectory. The optimization problem is
transformed into a binary integer programming problem that
can be easily solved by existing methods. Additionally, Yao
et al. [121] employed trajectory discretization to decrease
computational demands, proposing heuristic algorithms based
on greedy and particle swarm optimization techniques to
reduce the number of chargers.

5) Radiation Characteristics: several studies have explored
the radiation characteristics of omnidirectional chargers, fo-
cusing on the effects of electromagnetic radiation (EMR),
interference, and penetration on deployment strategies [40],
[41], [44], [58], [61], [122]–[129].

Given the widely recognized health risks associated with
high EMR exposure, ensuring EMR safety in charger deploy-
ment schemes is crucial [44], [58], [122], [123]. Dai et al. [44],
[58] focused on the safe charging problem of activating
omnidirectional chargers to maximize charging utility while
ensuring EMR safety. Since EMR constraints are imposed on
every point in the plane, this inevitably leads to an infinite
number of constraints. By proper discretization, the problem
is transferred to a Multidimensional 0/1 Knapsack (MDK)
problem [131] and a Fermat-Weber problem [132]. Subse-
quently, Dai et al. [122], [123] extended the safe charging
problem to charger deployment on a 2D continuous plane. To
address this problem, they discretized the continuous plane
such that the problem can be formulated into the MDK
problem. Recognizing the inadequacy of existing MDK ap-
proximation algorithms in terms of speed, they introduced
a fast approximation algorithm tailored for MDK problems.
Furthermore, they optimized the charger deployment scheme
to further improve speed by double partitioning the plane.

The studies mentioned above assume that the cumulative
charging power from multiple chargers is simply additive.
However, wave interference significantly impacts power dis-
tribution [40], [41], [124]–[128]. Li et al. [124] introduced
a charging model that accounts for the multipath effect.
Based on the proposed charging model, they explored the
problem of how to deploy a minimal number of chargers to
guarantee the duty cycle of devices. To solve the problem,
they proposed both greedy and particle swarm optimization-
based heuristic algorithms. Naderi et al. [125] discussed the
impact of wave interference on power distribution in both 2D
and 3D spaces. The study provides closed matrix formulas
for calculating received power at any given point in space. It
reveals that both received power and interference power over
the network exhibit Log-Normal distributions, while harvested
voltage follows a Rayleigh distribution.

Katsidimas et al. [126] presented a vector model to de-
scribe interference phenomena. They proposed two optimiza-
tion problems: maximizing the power and maximizing the
minimum cumulative power across all device subsets of
size k. To tackle these problems, they proposed heuristic
approaches. In their subsequent work [127], they extended
their study by assuming that omnidirectional chargers can

be slightly moved around the initial deployment location.
They proposed two heuristic methods for 1D and 2D spaces,
optimizing charger positions to enhance charging utility. In
addition, Ma et al. [40], [41] modeled the cumulative power
of multiple chargers using cosine waves, illustrating the energy
distribution of five concurrently active chargers. Their findings
revealed alternating zones of enhanced and weakened energy
due to constructive and destructive interference. To maximize
charging utility, a heuristic algorithm is proposed to optimize
charger and device deployment. Similarly, Xue et al. [128]
developed a two-step charger placement scheme, also consid-
ering wave interference, to determine the charger locations.

Radiation characteristics in scenarios with obstacles have
also been investigated [61], [129]. Wang et al. [61] assumed
that obstacles completely block charging power and explored
the optimal deployment of heterogeneous chargers under this
assumption. However, You et al. [129] found through exper-
iments that obstacles do not fully block energy but cause
attenuation instead. Their study comprehensively considered
the material, size, and location of obstacles to optimize
the omnidirectional charger deployment, aiming to maximize
charging utility. Considering the shadow fading caused by
obstacles, they established a practical charging model and
verified the correctness of the model by experiments. Based on
the established model, the plane is first discretized to solve the
problem of infinite candidate locations on the 2D continuous
plane. Then, a dominating coverage set extraction algorithm
is proposed to select candidate points with the largest number
of covers on the plane, Finally, a greedy algorithm with an
approximation ratio of 1− 1/e− ϵ is designed.

B. Directional Charger Deployment

Compared with omnidirectional chargers, directional charg-
ers have a narrower charging angle, demanding greater preci-
sion in their deployment, encompassing not only their physical
location but also their specific direction, as shown in Fig. 12.
The core challenge in deploying directional chargers is strate-
gically determining their location and direction to minimize
deployment costs, maximize charging utility, achieve multi-
objective optimization, and enhance charging performance by
utilizing directional radiation characteristics [8], [37], [55],
[56], [67], [68], [133]–[155]. Table V provides a comparison
of various directional charger deployment schemes.

1) Deployment Cost Minimization: some works [133]–[141]
focus on the directional charger deployment with a primary
objective of cost reduction. Unlike omnidirectional chargers,
which emit energy uniformly in all directions, directional
chargers concentrate energy and allow for flexible adjustments
in their charging direction. This makes them more efficient at
covering devices spread across different heights and positions
in three-dimensional (3D) scenarios. Additionally, directional
chargers can adapt to varying device energy consumption,
adjusting orientation to further optimize deployment costs.

Liao et al. [133] conducted a study on the deployment
of directional chargers in a 3D scenario, where directional
chargers are assumed to be on grid points at a fixed height
to maintain the energy supply for devices located below it.
Notably, in this configuration, the energy beam emitted by the
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Fig. 12. Illustration of a directional charger deployment scheme within a
network comprising 50 rechargeable devices and 10 directional chargers, each
with an effective charging distance of 50dm and a charging angle of 60◦.

directional charger is projected onto the device’s plane, pre-
senting a circular charging area. They proposed two heuristic
algorithms to optimize the number of chargers that can cover
all devices, one based on device location and the other on
device pairs. Analysis results show that the latter is superior
in the number of chargers, while the former has lower time
complexity. Subsequently, they modeled the transmitted energy
based on the Friis propagation model in [134] to reduce the
number of chargers with a more accurate energy estimate.
Jiang et al. [135] addressed the problem of directional charger
deployment in similar scenarios. They introduced two heuristic
algorithms, one greedy and the other adaptive, to minimize
the number of chargers. While the greedy approach prioritizes
covering most devices, the adaptive strategy selects directions
that provide higher charging power.

In addition to heuristic algorithms, several studies [136],
[137] propose metaheuristic-based deployment algorithms for
3D scenarios. In [136], a particle swarm charger deploy-
ment algorithm is presented. Specifically, on the basis of
the particle swarm algorithm, the local optimal results and
global optimal results are used to adjust the locations and
directions of directional chargers. The primary goal is to
minimize the number of chargers required to supply energy
to the devices effectively. Furthermore, Jiang et al. [137]
enhanced the particle swarm charger deployment algorithm
by employing genetic algorithms for parameter encoding and
optimization. This enhanced algorithm builds upon the particle
swarm optimization concept, utilizing parameters generated
by the genetic algorithm to optimize the directional charger
deployment, thereby further reducing the number of chargers.

In a WCN, devices perform various tasks, leading to varying
levels of energy consumption. The impact of this diverse
energy consumption on the number of directional chargers is
also studied in [138]–[141]. Due to frequent data forwarding,
devices near the BS consume more energy than those away
from the BS. To solve this problem, Lin et al. [138] designed
a novel hybrid search and removal strategy to optimize charger
deployment. This approach involves strategically placing the
directional charger near a device, followed by rotating it to
identify the coverage dominating set. It accounts for the device
mobility and energy consumption of the BS. Additionally,

Jaiswal et al. [139] also considered the impact of data traf-
fic distribution on device energy consumption. An optimal
charger deployment scheme based on a transferable belief
model is proposed to find the optimal number of chargers.
Furthermore, the charger deployment problem of satisfying
the individual energy supply requirements for each device
is investigated in [140]. The spatial occupation of mobile
devices is considered in [141]. This study first investigates
the properties of the optimal arrangement of mobile devices
for a directional charger. Subsequently, an angle discretization
method is applied to obtain the finite candidate charging direc-
tions and their corresponding approximate charging power. To
optimize the charging cost, a (lnn+ 1)(1 + ϵ)-approximation
algorithm based on the greedy approach is proposed.

2) Charging Utility Maximization: several studies focus on
how adjusting the direction of directional chargers can signifi-
cantly enhance charging utility, optimizing energy distribution
to better meet device-specific demands [8], [37], [55], [56],
[67], [68], [142]–[148].

Dai et al. [37], [56] established the directional charging
model through field experiments, modeling charger and sensor
charging areas as sector areas of 60◦ and 120◦ angles, respec-
tively. To maximize charging utility, they employed techniques
for approximating nonlinear charging power and expected
utility, transforming the problem into an almost linear one.
Subsequently, they designed a dominating coverage set extrac-
tion method to reduce the search space without performance
loss and proposed a (1− 1/e− ϵ)-approximation algorithm to
solve the problem. Additionally, they investigated a direction
scheduling problem for charging tasks [67], [68]. To address
this problem, a centralized offline algorithm and a distributed
online algorithm are proposed to maximize the overall task
utility. Ding et al. [142] delved into solving the charging
utility maximum problem subject to the deployment cost
budget constraint. The problem is solved by an approximation
algorithm that maximizes charging utility.

The optimization of charging utility for devices with diverse
energy consumptions is explored in [143]–[145]. Devices
closer to the BS exhibit higher energy consumption, leading
to higher charging demands. Lin et al. [143] discretized the
charging demand based on the distance between the device and
the BS, which resulted in the charging area being divided into
sub-areas with distinct charging power and charging demand.
Each sub-area is further analyzed to determine the coverage
dominating set, from which the solution set is selected to mini-
mize the difference between its charging demand and charging
power. The study in [144] focuses on the energy consumption
of task loading. To balance energy supply and task loads, they
designed an approximation algorithm to optimize the direction
of directional chargers and the energy transferred by devices to
tasks. He et al. [145] studied a small-scale WCN for dockless
shared bikes, which includes Powercast wireless chargers and
the receiving antenna integrated into the shared bike’s basket.
To minimize total charging delay, they first proposed an
efficient charging direction scheduling algorithm for a single
charger in small-scale scenarios. Then, they extended the
solution to multiple charger joint direction scheduling in large-
scale scenarios based on dynamic programming.
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TABLE V
COMPARISON OF DIRECTIONAL CHARGER DEPLOYMENT SCHEMES

(‘EVM’: EVALUATION METHODS; ‘TA’: THEORETICAL ANALYSIS; ‘NS’: NUMERICAL SIMULATIONS; AND ‘FE’: FIELD EXPERIMENTS)
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Paper Objectives Constraints Devices Approaches Performance metrics EVM

[133] Minimum number of chargers Coverage constraints Static Heuristic Number of chargers NS

[134] Minimum number of chargers Energy provision constraints Static Heuristic Number of chargers NS

[135] Minimum number of chargers Coverage constraints;
energy provision constraints Static Heuristic Charging power; number of

chargers; execution time NS; FE

[136] Minimum number of chargers Energy provision constraints Static Metaheuristic Number of chargers NS; FE

[137] Minimum number of chargers Energy provision constraints Static Metaheuristic Number of chargers NS

[138] Minimum number of chargers Energy provision constraints Static Heuristic Number of chargers; execution
time; charging demand NS

[139] Minimum number of chargers Energy provision constraints Static Heuristic Average harvested power;
number of chargers NS

[140] Minimum number of chargers Energy provision constraints Static Approximation Number of chargers TA; NS

[141] Minimum deployment cost Coverage constraints;
spatial occupation issue Mobile Approximation Deployment cost; running time TA; NS; FE

[37],
[56] Maximum charging utility Charger direction constraints Static Approximation Harvested power TA; NS; FE

[67],
[68] Maximum task utility Charger direction constraints Static Approximation Charging utility TA; NS; FE

[142] Maximum charging utility Deployment cost budget Static Approximation Deployment cost;
charging levels TA; NS

[143] Maximum charging efficiency Energy consumption constraints Static Heuristic Charging efficiency;
number of chargers NS

[144] Maximum task utility Energy consumption constraints Static Approximation Task utility;
energy consumption TA; NS

[145] Minimum charging delay Energy provision constraints Static Heuristic Charging delay NS

[146],
[55] Maximum charging utility Connectivity constraints Static Approximation Charging utility TA; NS; FE

[8] Maximum charging utility Charging power jittering;
device drifting constraint Static Approximation Charging utility TA; NS; FE

[147],
[148] Maximum charging utility Charger mobility constraints Static Approximation Charging utility TA; NS; FE

[149],
[150]

O1:Maximum charging efficiency
O2: Maximum energy balance Charger capacity constraint Mobile Heuristic Charging efficiency; energy

balance; lifetime of the chargers NS

[151] O1: Maximum received power
O2: Maximum survival probability Energy provision constraints Static Heuristic Received power;

survival probability TA; NS

[152],
[153]

Maximum omnidirectional charging
proportion Energy provision constraints Static Heuristic Omnidirectional charging

proportion TA; NS; FE

[154] Maximum charging utility Charger location constraints;
charger direction constraints Static Approximation Harvested power TA; NS; FE

[155] Minimum energy consumption Energy provision constraints Static Heuristic;
metaheuristic Energy consumption TA; NS

Some studies focus on the connectivity, robustness, and
limited mobility of the directional charging deployment [8],
[55], [146]–[148]. Yu et al. [55], [146] focused on the problem
of connected directional charger deployment, that is, given
candidate locations, how to determine the location and di-
rection of directional chargers under connectivity constraints,
such that overall charging utility is maximized. They proposed
a constant approximation algorithm to solve the problem.
Wang et al. [8] considered the problem of robust charger
deployment, that is, given a number of rechargeable devices,
each of which may drift within a certain range, how to
determine the directions of directional chargers to maximize
the charging utility considering the charging power jitter. To
address this problem, they developed a probabilistic model for
charging power, applied area and direction discretization, and
proposed a (1/2−ϵ)-approximation algorithm. Dai et al. [147],
[148] studied the problem of deploying directional chargers
with limited mobility, that is, how to determine deployment
locations, stop locations and directions, and portions of time
for all directional chargers with limited mobility, such that
overall charging utility of devices is maximized.

3) Multi-Objective Optimization: multi-objective optimiza-
tion has been explored in the deployment of directional
chargers, with a focus on strategically adjusting charger orien-
tations to simultaneously enhance charging efficiency, energy
distribution, and other key performance metrics [149]–[151].

Nikoletseas et al. [149], [150] investigated mobile ad
hoc networks with multiple directional chargers. Under the
constraint of limited charger battery energy, they proposed
two heuristic algorithms. These algorithms are designed to
determine, in each charging cycle, which directional chargers
should be activated, with the respective objectives of maxi-
mizing charging efficiency and balancing the residual energy
of the chargers. Wang et al. [151] proposed an adaptive
directional charging scheme for a large-scale sensor network.
The scheme utilizes energy beamforming strategies to charge
nearby sensors. they derived closed-form expressions for the
distribution metrics of the aggregate received power at a
typical sensor using stochastic geometry. They also analyzed
the optimal charging radius for maximizing the average re-
ceived power and the sensor active probability. Simulation
results demonstrated that the proposed adaptive directional
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charging scheme is more energy-efficient than conventional
omnidirectional charging schemes.

4) Directional Radiation Characteristics: some studies ex-
plore the radiation characteristics of directional chargers to
achieve full-view coverage and multi-directional deployment,
and accounting for anisotropic energy distribution [152]–[155].

Full-view coverage of the charging area can be achieved
using directional chargers [152], [153]. Dai et al. [152] intro-
duced the concept of omnidirectional charging, defining it as
an area where any device, regardless of orientation, receives
power not lower than a specified threshold. For deterministic
charger deployments, they developed a fast detection algorithm
to verify omnidirectional charging coverage. For random de-
ployments, they calculated the probability of achieving such
coverage. Their subsequent work, detailed in [153], extends
this work by designing a charger deployment scheme that
satisfies omnidirectional charging. By strategically deploying
chargers at the points of a triangular lattice, they estimated the
optimal length of the lattice side that satisfies omnidirectional
charging and derived the corresponding error bound.

To expand the charging angle of directional chargers, Dai et
al. [154] introduced the use of a specialized charger equipped
with multiple directional antennas. They delved into the de-
ployment problem of these multi-directional chargers, that is,
how to determine the optimal locations for the chargers and
directions for their multiple antennas, such that the charging
utility is maximized. Jia et al. [155] considered the anisotropic
energy receiving property of directional charging, which is
the charging power related to not only distance but also angle.
Based on this property, they studied the energy-saving problem
in WCNs. They assumed that the charging demand distribu-
tion follows a Gaussian distribution, and designed a charger
direction scheduling scheme to minimize energy consumption.

C. Non-radiative Charger Deployment

In contrast to radiative chargers, non-radiative chargers
operate in the near field, offering higher charging efficiency,
particularly well-suited for one-to-one charging scenarios.

Wireless charger

Rechargeable device
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Base station

Wireless power transfer

Wireless information transfer

Rechargeable deviceRechargeable deviceRechargeable device

Wireless chargerWireless chargerWireless charger

Base stationBase stationBase station
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Fig. 13. Illustration of a non-radiative charger deployment scheme in a
clustered network.

Consequently, the non-radiative charger deployment primarily
focuses on efficiently allocating chargers to charge fixed or
mobile devices, as well as improving charging performance
through the multi-hop charging feature [15], [59], [60], [94],
[95], [156]–[160]. Fig. 13 illustrates an example of a non-
radiative charger deployment scheme in a clustered network,
where devices are organized into clusters and communicate
with a BS through designated Cluster Heads (CHs). Non-
radiative chargers are strategically deployed near CHs with
high energy consumption to wirelessly charge them. Moreover,
Table VI summarizes and compares various non-radiative
charger deployment schemes.

1) Single-hop Charging: several studies [15], [59], [94],
[95], [156]–[158] investigate single-hop charging, where non-
radiative chargers are deployed to provide efficient one-to-one
energy transfer to devices.

Some research [59], [156], [157] focuses on deploying non-
radiative chargers for stationary devices. He et al. [156] aimed
to increase the network’s maximum flow rate by strategically
placing a limited number of chargers near bottleneck devices.
They formulated the problem as a Mixed Integer Linear Pro-
gramming (MILP) model, solving it optimally for small-scale
networks and using heuristic algorithms for larger ones. In
their subsequent work [157], they designed a meta-heuristic to
search for a neighboring solution that yields a higher max flow
rate. Moghadam et al. [59] investigated the joint optimization
of magnetic charger locations to maximize the minimum har-
vested power of devices. They presented an adaptive magnetic

TABLE VI
COMPARISON OF NON-RADIATIVE CHARGER DEPLOYMENT SCHEMES

(‘EVM’: EVALUATION METHODS; ‘TA’: THEORETICAL ANALYSIS; ‘NS’: NUMERICAL SIMULATIONS; AND ‘FE’: FIELD EXPERIMENTS)

Paper Objectives Constraints Devices Charging types Approaches Performance metrics EVM
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[156],
[157] Maximum flow rate

Flow conservation constraints;
charger capacity constraints;
link capacity constraints;
charger quantity constraint

Static Single-hop
Exact;
heuristic;
metaheuristic

Max flow NS

[59] Maximum minimum received power Power budget constraint Static Single-hop Heuristic Receive power TA

[15] Maximum charging satisfaction Charger quantity constraint Mobile Single-hop Approximation;
heuristic

Residual lifetime
distribution;
charging satisfaction

TA;
NS

[158] Minimum number of chargers Energy provision constraints Mobile Single-hop Heuristic Number of chargers;
network lifetime NS

[94] Minimum delivery time Energy provision constraints;
UAV capacity constraint Mobile Single-hop Heuristic Coverage rate NS

[95] Minimum number of chargers Coverage constraints Mobile Single-hop Heuristic Number of chargers NS

[159] Minimum number of chargers Energy provision constraints Static Multi-hop Exact Number of chargers NS

[60],
[160] Minimum deployment cost Energy provision constraints;

charger capacity constraint Static Multi-hop Approximation;
heuristic

Number of chargers;
energy consumption;
deployment cost;
running time

TA;
NS
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beamforming approach and developed an iterative algorithm
for solving the problem approximately. The iterative algorithm
leverages the symmetry principle, strategically placing charg-
ers symmetrically over the midpoint of the target line.

The deployment of non-radiative chargers for mobile de-
vices (especially UAVs) is investigated in [15], [94], [95],
[158]. Xu et al. [15] focused on the optimal allocation of non-
radiative chargers for mobile devices, such that overall charg-
ing satisfaction is maximized. For known and unknown motion
trajectories of mobile devices, they presented an approximate
algorithm and a heuristic algorithm to solve them, respectively.
The optimization of non-radiative charger deployment for
UAVs is investigated in [158]. To minimize the number of
chargers required to create at least one viable routing path for
each BS within a specified network, four heuristic algorithms
are proposed to solve the optimization problem. Arafat et
al. [94] explored the joint optimization of charger deployment,
flight segmentation, and route planning for UAV delivery,
aiming to maximize the number of customers delivered within
the shortest possible time. Famili et al. [95] explored a charger
deployment scheme to ensure the continuous flight of UAVs.
They proposed a solution based on evolutionary algorithms to
minimize the number of chargers.

2) Multi-hop Charging: in multi-hop charging, non-radiative
chargers transmit power to remote devices using magnetic
resonance. The deployment of non-radiative chargers in this
scenario is studied in [60], [159], [160].

Rault et al. [159] investigated the optimization of charger
deployment to minimize the number of chargers required for
energy supply in multi-hop scenarios. To achieve this, they
obtained different disjoint charging trees, so that a charger
located at a root can recharge all the nodes of the charging
tree. Wu et al. [60] explored the deployment cost optimization
problem for multi-hop chargers. To minimize deployment
cost under charger capacity constraints, they presented a
(lnn + 1)-approximation algorithm, where n is the number
of rechargeable devices. Moreover, they presented a cost
sharing mechanism to balance the cost budget, and conflict
avoidance schemes to schedule charging tasks. Furthermore,
Wu et al. [160] decomposed the deployment cost optimization
problem into two sub-problems, solving them with a greedy
algorithm and a (1/2)-approximation algorithm.

D. Heterogeneous Charger Deployment

In addition to homogeneous WCNs, researchers have ex-
plored the deployment of heterogeneous WCNs [61], [161],

[162]. A heterogeneous WCN typically includes at least two
different types of wireless chargers, including a variety of
dedicated chargers as well as BSs with WPT technology.
This diversity in charger types introduces new challenges to
their deployment. Table VII summarizes and compares various
heterogeneous charger deployment schemes.

Erol et al. [161] investigated a heterogeneous WCN,
wherein a mix of macro and small cell BSs are available
and power can be scavenged from the already existing small
cell base stations in addition to the dedicated chargers. They
proposed Integer Linear Programming (ILP) models that se-
lect active BSs and chargers, such that the received energy
is maximized while the numbers of BSs and chargers are
maximized. They employed state-of-the-art ILP solvers, such
as CPLEX [163], for an efficient solution. Lin et al. [162]
studied the deployment of a mix of directional and omni-
directional chargers, assuming both have the same charging
efficiency but different ranges. The optimization objective is
to deploy a minimum number of two chargers on a continuous
2D plane so that all devices are covered and the charging
power is maximized. Given the infinite potential locations for
deployment, they discretized the continuous plane based on
charging power to simplify the search for optimal locations
Subsequently, they proposed an exhaustive search for minimal
dominating sets, which are sets of chargers that collectively
guarantee coverage. Finally, they leveraged a greedy algorithm
to identify the optimal charger deployments.

Wang et al. [61] addressed the problem of heterogeneous
charger deployment in WCNs with obstacles. They assumed
that the charging power could not penetrate these obstacles,
nor could it be reflected from the surface of the obstacles,
which means the determination of the location and direction
of the heterogeneous charger needs to take into account the
location, size, and shape of the obstacles. To address this, they
used multi-feasible geometric area discretization and a practi-
cal dominating coverage set extraction algorithm to reduce the
infinite solution space to a finite one. They then formulated the
optimization as a submodular function maximization problem,
subject to a partition matroid constraint, which can be solved
using an approximation algorithm.

In summary, charger deployment schemes are crucial in de-
termining the charging efficiency and coverage of WCNs. By
flexibly deploying omnidirectional, directional, non-radiative,
and heterogeneous chargers to meet various charging needs,
a solid physical foundation is established for constructing
effective and efficient WCNs.

TABLE VII
COMPARISON OF HETEROGENEOUS CHARGER DEPLOYMENT SCHEMES

(‘HCD’: HETEROGENEOUS CHARGER DEPLOYMENT; ‘EVM’: EVALUATION METHODS; ‘TA’: THEORETICAL ANALYSIS; ‘NS’: NUMERICAL
SIMULATIONS; AND ‘FE’: FIELD EXPERIMENTS)

Paper Objectives Constraints Devices Approaches Performance metrics EVM

H
C

D

[161] O1: Maximum received power
O2: Minimum number of chargers

Energy provision constraints;
charging area restrictions Static Exact Number of chargers;

received power NS

[162] O1: Maximum charging power
O2: Minimum number of chargers Full coverage constraints Static Heuristic Charging power NS

[61] Maximum charging utility Charger location constraints;
charger direction constraints Static Approximation Charging utility TA; NS; FE
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V. CHARGING SCHEDULING SCHEMES

Once charger deployment is determined, the next criti-
cal step is efficiently scheduling charger resources to en-
hance charging services. This process relies on four key
factors: power control, time allocation, energy beamforming,
and multi-resource optimization, which collectively manage
the power, time, and spatial resources of wireless chargers.
Power control adjusts charging power dynamically based
on device needs and environmental factors, ensuring effi-
cient energy transfer without overcharging or underutilizing
resources (Sec. V.A). Time allocation manages the charg-
ing duration for each device, promoting fairness and timely
charging (Sec. V.B). Energy beamforming enhances efficiency
by accurately directing electromagnetic energy toward tar-
get devices (Sec. V.C). Finally, multi-resource optimization
synchronizes power, time, and spatial energy distribution,
ensuring efficient resource utilization, minimizing conflicts,
and maximizing network performance (Sec. V.D).

A. Power Control

Generally, the power control scheme in WCNs refers to
the strategic control of charging power that wireless charg-
ers deliver to multiple devices [62]–[66], [164]–[182]. This
scheme aims to manage and optimize charging power to var-
ious devices based on their individual requirements, charging
states, and prioritization, ensuring effective energy transfer
while maintaining overall system performance and efficiency.
The wireless charger can either be a dedicated charger or a
multifunctional charger. The latter, such as BSs, CHs, and
Hybrid Access Points (HAPs), are capable of transmitting
both information and power. The power control scheme for
dedicated chargers emphasizes optimizing charging perfor-
mance by adjusting the received energy of devices or the
charging area of chargers (as depicted in Fig. 14) [62]–[65],
[165]–[176]. In contrast, the power control scheme for mul-
tifunctional chargers must simultaneously optimize wireless
information and power transfer [66], [177]–[182]. Table VIII
summarizes various power control schemes.

1) Charging Performance Optimization: some papers [62],
[63], [164], [165] explore methods to control charging power
in order to provide efficient charging services to both station-
ary and mobile devices. These methods focus on optimizing
charging performance by adjusting power according to device
needs, locations, and movement trajectories.

Zhang et al. [62] developed an approximation algorithm
to control charging power in a pre-determined charger de-
ployment, while later work [63] expanded the problem by
considering mobile device scenarios and flexible charger loca-
tions. Niyato et al. [164] investigated a competitive charging
scenario. To maximize charging utility, they proposed a non-
cooperative game to analyze the competitive bidding of charg-
ing power by devices, and considered the Nash equilibrium as
a solution. Yu et al. [165] designed a novel attack scheme
under charger capture attack, that is, an intelligent adversary
captures a limited number of chargers and adjusts the charging
power of chargers to maximize attack utility. To achieve
this, they proposed an attacking algorithm with a constant
approximation ratio and lightweight timing complexity.
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Fig. 14. Illustration of a power control scheme: adjusting the radius of
omnidirectional chargers.

The charging power control scheme for mobile devices
is studied in [166], [167]. Madhja et al. [166] considered
a mobile ad hoc network consisting of mobile devices and
a single static charger with limited energy. Utilizing real-time
data on the mobility and energy consumption patterns of mo-
bile devices, they studied the dynamically adjustment charging
power, which directly influences the charging area. The aim is
to efficiently compute the appropriate range of the charger with
the goal of prolonging the network lifetime. Wu et al. [167]
studied tunable charger scheduling for mobile devices, aiming
to optimize overall charging utility. By approximating the
charging power as piecewise constant power, they partitioned
the moving trajectory of devices. Then, they proposed a 1−1/e

2 -
approximation algorithm for scheduling charging on/off at a
fixed power level and a 1−1/e

2(1+ϵ)T -approximation algorithm for
scheduling charging with tunable power levels, where T is
the maximum power level.

2) EMR Safety Considerations: certain power control
schemes [64], [65], [168]–[176] aim to improve charging
performance while adhering to EMR exposure limits, which
are crucial for protecting human health.

Dai et al. [168], [169] explored how to adjust charger
power to maximize charging utility while adhering to EMR
safety constraints, transforming the problem into a Linear Pro-
gramming (LP) model and developing distributed algorithms
to achieve approximation ratios. In their subsequent research
[170], [171], they explored EMR jitter, which may lead to
exceeding the threshold even when the expected EMR remains
below it. The problem of robustly safe charging considering
EMR jitter is studied. This involves strategically scheduling
charger power to maximize charging utility for all rechargeable
devices while ensuring that the probability of EMR exceeding
the threshold is no less than the given confidence. In addition,
Li et al. [172], [173] focused on the fairness of charging.
Specifically, their work centers on the radiation-constrained
fair charging problem, where the objective is to maximize
the minimum charging utility. This is accomplished through
adjustments to the power of wireless chargers while ensuring
EMR safety. Ma et al. [174] explored a more accurate EMR
computing model and studied the problem of maximizing
charging power while ensuring EMR safety. This problem
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TABLE VIII
COMPARISON OF POWER CONTROL SCHEMES

(‘EVM’: EVALUATION METHODS; ‘TA’: THEORETICAL ANALYSIS; ‘NS’: NUMERICAL SIMULATIONS; AND ‘FE’: FIELD EXPERIMENTS)

Paper Objectives Constraints Devices Approaches Performance metrics EVM

Po
w

er
C

on
tr

ol

[31] Minimum number of chargers Energy provision constraints Static;
mobile Approximation Approximation ratio;

average consumption power TA; NS

[62],
[63] Maximum charging quality Power budget constraints Static Approximation Charging quality;

average running time TA; NS

[164] Maximum charging utility Energy provision constraints Static Heuristic Strategy probabilities NS

[165] Maximum attacking utility Energy provision constraints Static Approximation Attacking utility TA; NS

[166] O1: Maximum coverage quality
O2: Maximum network lifetime Power budget constraint Mobile Heuristic Survival quantity NS

[167] Maximum charging utility Power budget constraint Mobile Approximation Charging utility TA; NS; FE

[168]–
[171] Maximum charging utility EMR intensity constraints Static Approximation Charging utility TA; NS; FE

[172],
[173]

Maximum minimum charging
utility EMR intensity constraints Static Approximation Minimum charging utility;

communication cost TA; NS; FE

[174] Maximum harvested power EMR intensity constraints Static Exact harvested power NS

[64],
[65] Maximum charging efficiency EMR intensity constraints Static Heuristic Charging efficiency; maximum

radiation; energy balance NS

[175] Minimum radiation degree Energy provision constraints;
power budget constraints Mobile Approximation Radiation degree;

communication interval NS

[176] Optimizing trade-off between
EMR and charging efficiency Energy provision constraints Mobile Heuristic EMR; charging efficiency TA

[66] Maximum energy efficiency
Energy provision constraints;
power budget constraints
minimum data rate requirement

Static Heuristic Energy efficiency;
average harvested energy NS

[177] O1: Minimum transmission power
O2: Maximum charging ratio Energy provision constraints Static Heuristic Transmission power;

charging ratio NS

[178] Maximum minimum transmission
rate Power budget constraints Static Exact Average scheduling rates;

residual power NS

[179] Maximum network throughput Outage constraints Static Exact Transmission probability;
outage probability TA; NS

[180] Maximum rate coverage Energy provision constraints Mobile Exact Rate coverage TA; NS

[181] Maximum charging efficiency Energy provision constraints Static Exact Average harvested power;
charging efficiency TA; NS

[182] Maximum sensing rate Power budget constraints Static Exact Network sensing rate TA; NS

is an LP problem with infinite constraints. To convert the
problem into a typical LP problem with finite constraints, they
introduced a sampling safety charging algorithm.

Some papers [64], [65], [175], [176] modify the charging
area by controlling the charging power to ensure EMR safety.
Nikoletseas et al. [64], [65] investigated a low radiation
efficient charging problem, which aims to optimize the amount
of energy transferred while limiting radiation levels. They
proposed a charging model that takes into account the hard-
ware constraints of chargers and devices, as well as non-linear
constraints in the time domain. An iterative local improvement
heuristic is proposed to solve the problem. They also intro-
duced a relaxation of the problem and provided an integer
program for finding the optimal solution. Zhu et al. [175]
proposed a real-time power control scheme to minimize the
maximal radiation degree among mobile devices while main-
taining the normal operation of devices. They first discretized
the users’ moving trajectories and transformed the real-time
problem into a tractable one. Then, they proposed an efficient
distributed algorithm with an approximation ratio (1 + ϵ) to
solve the transformed problem. Filios et al. [176] used a
vector model to accurately represent the degree of radiation.
To optimize the trade-off between the radiation levels and the
power transfer efficiency, they presented heuristic algorithms
to efficiently control EMR in WCNs.

3) Multifunctional Charger Power Control: in addition to
dedicated chargers, several papers delve into power control
schemes for multifunctional chargers that transmit both power
and information [66], [177]–[182]. These schemes require
coordination of both functions to ensure efficient operation.

Guo et al. [66] considered cooperative clustered WCNs,
where CHs serve as both power and information transmitters,
and can communicate directly with each other or facilitate one-
or multi-hop communication via relaying. To maximize energy
efficiency, they proposed a distributed iterative algorithm for
power allocation, power segmentation, and relay selection by
exploiting fractional programming and dual decomposition.
Multi-hop wireless charging is explored in [177]. The study
focuses on the multi-hop power flow problem, introducing
heuristic algorithms to determine optimal configurations for
power flow and the joint data and power flows. Roh et al. [178]
addressed a fair charging problem, which seeks to balance
available power among devices at varying distances from
chargers. They transformed this problem into an equivalent
LP problem, employing an LP solver to achieve joint routing,
MAC, and power control.

Some papers study the power control schemes in some spe-
cial network scenarios [179]–[182]. Building upon cognitive
radio networks, Lee et al. [179] proposed a method for wire-
less network coexistence where secondary chargers harvest
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TABLE IX
COMPARISON OF TIME ALLOCATION SCHEMES

(‘EVM’: EVALUATION METHODS; ‘TA’: THEORETICAL ANALYSIS; ‘NS’: NUMERICAL SIMULATIONS; AND ‘FE’: FIELD EXPERIMENTS)

Paper Objectives Constraints Devices Approaches Performance metrics EVM

Ti
m

e
A

llo
ca

tio
n

[15] Maximum charging satisfaction Charger quantity constraint Mobile Approximation;
heuristic

Residual lifetime distribution;
charging satisfaction TA; NS

[183] Maximum operator profit Charger capacity constraint;
energy provision constraints Mobile Heuristic Charging rate; operator profit;

average queue backlog NS

[149],
[150]

O1:Maximum charging efficiency
O2: Maximum energy balance Charger capacity constraint Mobile Heuristic Charging efficiency; energy

balance; lifetime of the chargers NS

[67],
[68] Maximum task utility Charger direction constraints Static Approximation Charging utility TA; NS; FE

[155] Minimum energy consumption Energy provision constraints Static Heuristic;
metaheuristic Energy consumption TA; NS

[184] Minimum charging periods Energy provision constraints Static Approximation
Number of fully charged devices;
harvested energy; charging
periods

TA; NS

[185] Maximum charging efficiency Coverage constraints;
power budget constraints Static Heuristic

Number of fully charged devices;
harvested energy; charging
efficiency; charging periods

NS

[69] Maximum network throughput Total time constraint Static Exact Total throughput TA; NS

[186] Maximum coverage probability Energy provision constraints;
minimum SINR requirement Static Exact Uplink/downlink coverage

probability TA; NS

[187] Maximum network throughput Device distribution constraints Static Exact Coverage probability;
average network throughput TA; NS

[188],
[189] Maximum network lifetime Energy provision constraints Static Heuristic Average network lifetime NS

energy as well as reuse the spectrum of primary chargers.
To avoid interference, each primary charger is associated with
a guard zone, and at the same time rechargers to secondary
chargers secondary chargers located within its harvesting
zone. Based on this, they developed a model to determine
the transmission probability of a secondary transmitter, and
characterized the maximum throughput of the secondary net-
work under specified outage constraints for both primary and
secondary devices. In addition, Kim et al. [180] introduced a
spatial attraction cellular network consisting of macro cells
overlaid with small cell BSs equipped with beamforming
antennas for wireless charging. In this network, mobile devices
with depleting batteries actively move toward the proximity
of BSs for recharging. Through meticulous adjustment of
the charging power, this spatial attraction not only enhances
spectral efficiency but also load balancing. They employed a
stochastic geometric approach to derive the optimal charging
power in a closed-form expression.

Power control schemes in massive antenna systems are
explored in [181], [182]. Khan et al. [181] studied a massive
Multiple-Input Multiple-Output (MIMO) system consisting of
a BS with multiple antennas and single-antenna users. The
BS transmits energy to users on the downlink and the users
exploit the received energy to transmit information with the
BS on the uplink. They studied power transfer efficiency and
energy efficiency. Using a piecewise linear energy collection
model, they derived the average harvested power. For wireless
energy transfer, they characterized the optimal number of BS
antennas and devices to maximize the efficiency of energy
transmission. Additionally, for wireless power and information
transmission, they analyzed and determined the optimal BS
transmit power for an energy-efficient system. Du et al. [182]
focused on energy beamforming in a massive MIMO system.
They investigated the optimal power allocation for channel es-
timation and energy transmission to each device that maintains
a required monitoring performance throughout the network.

B. Time Allocation

In WCNs, the coordination and organization of charging ac-
tivities in the time domain are crucial to ensure optimal energy
transfer and network performance. Time allocation schemes
typically involve allocating charging duration, scheduling en-
ergy transmission, and coordinating energy and information
transfer. The goal is to maximize the charging efficiency, min-
imize interference, and guarantee the energy supply, among
other things [15], [67], [68], [149], [150], [155], [183]–[191].
Table IX summarizes different time allocation schemes.

1) Charging Performance Optimization: given their flexi-
bility and the necessity for effective scheduling in the time
domain, charging time allocation problems frequently emerge
in research involving mobile devices and directional charg-
ers [15], [67], [68], [149], [150], [155], [183].

Xu et al. [15] studied the charging time allocation for mo-
bile devices. To optimize the charging satisfaction of mobile
devices, they introduced an approximate algorithm for the case
where the travel trajectory of each mobile device is given. For
dynamic charging requests, they proposed an online algorithm.
Moreover, they proposed a non-trivial distributed scheduling
algorithm for unknown global knowledge of device energy
information. Lyu et al. [183] proposed a charging time scheme
for UAVs based on Lyapunov optimization. This scheme not
only improves operator revenue but also prevents congestion
at wireless chargers. Nikoletseas et al. [149], [150] explored
the scenario of using directional chargers to charge mobile
devices. Directional chargers are fixed in the network, and the
problem is how to determine which directional chargers should
be activated during each charging cycle to maximize charging
efficiency and balance the residual energy of the chargers. Dai
et al. [67], [68] investigated a direction scheduling problem
for charging tasks, where directional chargers are capable of
rotation. To maximize the utility of the task, they proposed
both a centralized offline algorithm and a distributed online
algorithm to schedule the direction of all chargers over time.
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Jia et al. [155] studied a similar direction scheduling prob-
lem. Leveraging the anisotropic energy receiving property of
directional charging, they focused on minimizing the energy
consumption of directional chargers.

2) Wave Interference Effect: wave interference between
wireless chargers requires scheduling tasks to minimize con-
flicts or leveraging interference to enhance charging perfor-
mance [184], [185], [190], [191].

Since nonlinear superimposed charging effects are caused
by wave interference, the charging utility of each charger can-
not be calculated independently, Guo et al. [184] established
a concurrent charging model and focused on a concurrent
charging scheduling problem to quickly fill all sensor nodes in
the shortest possible time. They proposed two efficient greedy
algorithms and gave an approximate ratio of one of them. The
charging time scheduling problem impacted by interference is
also considered in [190], [191], that is, how to optimize the
scheduling of chargers in the time domain, so as to minimize
the total charging time while ensuring energy supply. The
research builds a nonlinear superposition model, exploring
both one- and two-dimensional scenarios. Liu et al. [185]
used a vector model to represent cumulative power influenced
by wave interference. To enhance charging efficiency, they
proposed a two-step algorithm. First, they introduced a charg-
ing threshold model with an effective schedule. Then, they
proposed a multi-charger joint accumulative charging scheme
for devices that were not yet fully charged.

3) Multifunctional Charger Time Allocation: in WCNs with
multifunctional chargers, time is divided into slots, with some
designated for wireless power transmission and others for
information transmission or additional functions. Efficient time
allocation between these functions is crucial for optimizing
network performance [69], [186]–[189].

Some papers [69], [186], [187] explore the coordination
of energy and information transfer to maximize network
throughput. Ju et al. [69] considered a WCN where a BS
coordinates wireless energy/information transmissions to/from
a set of distributed devices. To maximize network throughput,
they jointly optimized the time allocated to power transmission
and data transmission given a total time constraint. Kishk et
al. [186] considered a cellular-based WCN. Each time slot
is assumed to be partitioned into charging, downlink, and
uplink sub-slots. Within each time slot, devices first harvest
energy from BSs and then use this energy to perform downlink
and uplink communication in subsequent sub-slots. For this
setup, they derived a combined probability that the device will
obtain sufficient energy in the charging sub-slots and obtain
a sufficiently high Signal-to-Interference-Noise Ratio (SINR)
in the following two sub-slots. The optimal slot partitioning
that maximizes throughput is also studied. The study [187]
analyzes a large-scale WCN. Considering the inefficiency of
wireless charging, the spatial distribution of devices is modeled
as a Cluster Point Process (CPP). The study introduces trun-
cated Matern CPP and Thomas CPP, considering the practical
transmission range. The performances of coverage probability
and average received SINR are derived. Through pseudo-
convexity optimization, the time allocation for energy and
information transmission is optimized.

Some works [188], [189] delve into the coordination of
energy and information transfer with the goal of extending
the network lifetime. Du et al. [188] explored the problem
of scheduling the transmission of energy beams in the time
domain. They explored critical factors such as energy transfer
efficiency and packet generation rates necessary to achieve sus-
tained network immortality. For larger network sizes or packet
generation rates, they further studied the lifetime maximization
problem and proposed a solution algorithm. To make the
WCN immortal, in their subsequent work [189], they tried to
alleviate the problem of insufficient power supply by deploying
redundant devices, which not only increases the total harvested
energy, but also reduces the energy consumption of devices.

C. Energy Beamforming

In WCNs, energy beamforming significantly enhances the
charging power transferred to devices [10], [33], [59], [70],
[192]–[201]. The energy beamforming schemes in WCNs are
mainly categorized into two types: distributed and central-
ized beamforming schemes. Distributed beamforming schemes
control the phase and relative amplitude of signals transmitted
by multiple chargers distributed in the network [10], [59],
[70], [192]–[194]. Centralized beamforming schemes control
the phase and relative amplitude of signals transmitted by
multiple antennas of a single charger [33], [195]–[201]. As
shown in Fig. 15, the centralized beamforming scheme allows
the control of multiple transmitted signals from a transmitter
to efficiently transmit energy to specified receivers. Table X
provides a summary of energy beamforming schemes.

1) Distributed Beamforming: distributed beamforming
schemes coordinate the transmit antennas of multiple charg-
ers [10], [70], [192], [193] to ensure that electromagnetic
waves emitted by the antennas reach the receiver in phase, en-
abling coherent superposition to maximize charging efficiency.
This process is achieved by adjusting the phase and amplitude
of the signal of transmit antennas.

Fan et al. [70] designed a distributed beamforming scheme
that concentrates energy around a target while minimizing
energy density in surrounding areas. They achieved this by
arranging a set of distributed chargers around the device
and coherently combining their phases. In their follow-up
study [10], they introduced a flexible far-field charging system
to satisfy the continuous energy supply of medical implants.
Leveraging a distributed beamforming scheme, energy can be
precisely focused on medical implants inside the human body,
with no energy dispersed elsewhere, ensuring the safety of
the human body. In [192], the study investigates distributed
WPT with or without frequency and phase synchronization.
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Fig. 15. Illustration of an energy beamforming scheme.
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TABLE X
COMPARISON OF ENERGY BEAMFORMING SCHEMES

(‘EVM’: EVALUATION METHODS; ‘TA’: THEORETICAL ANALYSIS; ‘NS’: NUMERICAL SIMULATIONS; AND ‘FE’: FIELD EXPERIMENTS)

Paper Objectives Constraints Devices Approaches CSI Performance
metrics EVM

E
ne

rg
y

B
ea

m
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g

[70],
[10] Maximum receive power EMR intensity constraints Mobile Adaptive

Beamforming N.A. Receive power NS; FE

[192] Maximum receive power Energy provision constraints Static Adaptive
Beamforming Perfect Receive power NS; FE

[193] Maximum receive power Phase constraint Static Heuristic N.A. Receive power NS

[59] Maximum receive power Power budget constraint Static Adaptive
Beamforming N.A. Receive power TA

[194] Minimum transmit power Power provision constraints Static Exact;
approximation Imperfect

Outage
probabilitiy;
power efficiency

TA; NS

[33] Maximum receive power Average power constraint Static Exact N.A. Rate-energy
region TA; NS

[195] Maximum receive power Individual SINR constraints;
power budget constraint Static Approximation Perfect

Average
harvested power;
running time

TA; NS

[196] Maximum charging efficiency Energy provision constraints Static Zero-forcing
beamforming Perfect Charging

efficiency NS

[197] Minimum transmit power Energy provision constraints;
power budget constraint Static Exact

Approximation Perfect Transmit power TA; NS

[198] Maximum receive power Individual SINR constraints Static Zero-forcing
beamformingt

Perfect/
imperfect

Receive power;
SINR NS

[199] Maximum receive power Power budget constraint Static Asymptotically
optimal Imperfect Receive power TA; NS

[200] Minimum transmit power Individual SINR constraints;
energy provision constraints Mobile Approximation Imperfect

Average
harvested power;
running time

TA; NS

[201] Maximum average receive power Energy provision constraints;
power budget constraint Static Approximation Imperfect Average receive

power TA; NS

Three beamforming schemes, namely optimal, static, and
random, are analyzed in terms of receiving power and coverage
probability. Additionally, Katsidimas et al. [193] explored a
distributed beamforming scheme to maximize charging power.
They used a vector model to represent the superposition
of electromagnetic waves radiated by multiple chargers. By
adjusting the phases among multiple chargers, constructive
interference is formed at devices to maximize charging power.

For non-radiative WPT, distributed beamforming ensures
that magnetic fields from multiple chargers constructively
combine at the receiving device, enhancing magnetic beam-
forming gain. This process is done by adjusting the cur-
rent (or equivalent source voltage) of the transmission coils.
Moghadam et al. [59] investigated magnetic beamforming in
a Multiple-Input Single-Output (MISO) WCN, in which a
BS is equipped with multiple antennas, and each device is
equipped with a single antenna. To maximize the harvested
power subject to power budget constraints, they proposed an
optimal magnetic beamforming solution in closed form, which
involves jointly assigning currents at different chargers. Zhang
et al. [194] explored a robust magnetic beamforming solution,
to minimize transmit power while ensuring an adequate energy
supply to devices. For a single device, they used Semidefinite
Relaxation (SDR) to achieve optimal beamforming. For mul-
tiple devices, they obtained an approximately optimal solution
by combining SDR with randomization techniques.

2) Centralized Beamforming: these schemes centrally con-
trol the phases and amplitudes of signals from a charger’s
multiple antennas, forming sharp beams aimed at specific
devices to maximize charging efficiency [33], [195]–[201].

Zhang et al. [33] investigated a MIMO wireless broadcast
system where a multi-antenna BS simultaneously transmits
information and energy to a pair of energy and information re-

ceivers. They developed optimal energy beamforming designs
for scenarios where the information and energy receivers are
either separate or co-located, aiming to balance information
and energy transmission. A multiuser MISO broadcast system
is explored in [195]. The joint information and energy trans-
mission beamforming problem is formulated to a non-convex
quadratically constrained quadratic program, and the optimal
solution is obtained by applying a semidefinite relaxation tech-
nique. Sheng et al. [196] studied energy-efficient beamforming
in MISO heterogeneous cellular networks. They devised two
beamformers, which are zero-forcing and mixed beamforming,
and proposed an efficient algorithm to obtain the optimal
power under both beamformers. López et al. [197] leveraged
energy beamforming for powering multiple devices in an
indoor distributed massive MIMO system. Employing tech-
niques such as semi-definite programming, successive convex
approximation, and maximum ratio transmission, they derived
optimal and suboptimal precoders to minimize transmit power
while satisfying energy and power constraints.

3) Beamforming under Imperfect CSI: accurate Channel
State Information (CSI) measurement is crucial for energy
beamforming, as it directly influences the precision of beam-
forming vectors and overall transmission performance. How-
ever, achieving perfect CSI is challenging due to estimation
and quantization errors. Several studies address beamforming
under imperfect CSI conditions [198]–[201].

Son et al. [198] proposed a joint beamforming algorithm
for multiuser MIMO systems that maximizes total harvested
energy while satisfying SINR constraints. When the beam-
forming vector serves both data collection and energy transfer
devices, harvested energy increases at the cost of SINR loss
for the data collection device. The sum rate and harvested
energy are analyzed under both perfect and imperfect CSI
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TABLE XI
COMPARISON OF MULTI-RESOURCE SCHEDULING SCHEMES

(‘EVM’: EVALUATION METHODS; ‘TA’: THEORETICAL ANALYSIS; ‘NS’: NUMERICAL SIMULATIONS; AND ‘FE’: FIELD EXPERIMENTS)

Paper Objectives Constraints Devices Approaches Performance metrics EVM

M
ul

ti-
re

so
ur

ce
Sc

he
du

lin
g

[71] Maximum charging satisfaction Charger quantity constraint Mobile Approximation;
heuristic

Residual lifetime distribution;
charging satisfaction TA; NS

[199] Maximum minimum uplink rate Power budget constraint Static Asymptotically
optimal Maximum minimum uplink rate TA; NS

[202] Maximum uplink rate Downlink rate constraint Static Exact Uplink rate TA; NS

[203] Maximum network throughput Time duration constraint Static Heuristic Network throughput NS

[204] Maximum charging efficiency
Energy provision constraints;
time duration constraint;
power budget constraint

Static Exact Charging efficiency;
network throughput TA; NS

[205] Minimum transmit power Task constraints Mobile Exact Average minimum transmit
energy and power TA; NS

[206] Minimum energy consumption Latency constraints;
energy provision constraints Static Exact Average energy consumption TA; NS

[207] Maximum energy effciency Energy consumption constraint Mobile Metaheuristic Energy effciency;
received energy TA; NS

[208] O1: Minimum energy consumption
O2: Maximum received energy

Power budget constraint;
latency constraints Static Exact Received energy TA; NS

[209] Minimum energy consumption Power budget constraint;
latency constraints Static Exact Received energy TA; NS

conditions. Yang et al. [199] explored large-scale MIMO
systems with imperfect CSI, employing time division du-
plexing to separate information and energy transmission, and
proposed an asymptotically optimal beamforming scheme to
maximize energy gain. Zhu et al. [200] designed simultaneous
robust information and energy beamforming for a multiuser
massive MIMO system. The objective is to minimize the
transmit power of the BS subject to individual SINR and
the energy provision constraints under imperfect CSI. Lastly,
López et al. [201] introduced a low-complexity beamforming
scheme for a multi-antenna BS to wirelessly power single-
antenna devices, relying only on average CSI, i.e., first-order
channel statistics of the channel.

D. Multi-resource Scheduling
In WCNs, effective scheduling of individual resources is

crucial, but equally important is the concurrent scheduling
of multiple resources. This entails strategically scheduling
and coordinating various resources, including charging power,
charging time, and energy beamforming, to enhance network
performance and charging efficiency [71], [199], [202]–[209].
Table XI compares various multi-resource scheduling schemes.

Some papers explore multi-resource scheduling in massive
MIMO systems [71], [199], [202]–[204]. In [71], wireless in-
formation and power transmission in massive MIMO systems
are considered. Subject to a delay constraint, a resource alloca-
tion scheme is proposed to jointly optimize charging time and
transmission power. In [199], a WPT-enabled massive MIMO
system is studied. To optimize network throughput and achieve
device fairness, the study maximizes the minimum rate for all
users, by optimizing channel estimation time, charging time,
energy-splitting fraction, and energy allocation vector. Gong
et al. [202] explored the optimal design of a partially WCN,
where some devices are wirelessly powered. The network
operates in two phases: during the downlink phase, the BS
simultaneously transfers power and information to devices;
in the uplink phase, devices transmit sensing data back to
the BS. To maximize the uplink sum rate while meeting the

downlink rate constraint, the study jointly optimizes downlink
beamforming, uplink beamforming, and time allocation.

To improve charging efficiency, an Intelligent Reflecting
Surface (IRS) is employed in massive MIMO systems [203],
[204]. Zhang et al. [203] explored an IRS-assisted WCN. The
IRS panel consists of low-cost, adaptable elements capable
of intelligently reflecting transmitted signals through phase
shift adjustments, thereby significantly enhancing charging
efficiency. In such a network, a BS transmits power to multiple
clustered devices, and these devices transmit information back
to the BS in the uplink. To maximize network throughput, they
studied optimizing the reflect beamforming by the IRS and
time allocation for the power transfer and information trans-
mission from different device clusters. Furthermore, Zargari et
al. [204] leveraged the capabilities of the RIS to maximize en-
ergy efficiency. They proposed a joint optimization of charging
time and transmission power, backscattering coefficients, local
computing frequencies, execution times, and RIS phase shifts.

Several studies address multi-resource scheduling in WCNs
combined with Mobile Edge Computing (MEC) [205]–[209].
The paper [205] discusses an MEC system where a BS acts
as an energy source and assists two mobile devices with their
computation-intensive, latency-critical tasks. The objective is
to minimize the total transmit energy of the BS through jointly
optimal power and time allocation. The optimization problem
is equivalent to a min-max problem and can be solved using
a two-phase method. Wang et al. [206] developed a multiuser
MEC-WPT design framework with joint energy beamforming,
offloading, and computing optimization. To minimize the total
energy consumption subject to users’ individual computation
latency constraints, they obtained an optimal solution in a
semi-closed form by leveraging the Lagrange duality method.
The study in [207] explores the mobility of mobile devices,
employing a random motion model to describe their movement
and an integral expression for the charging model. To optimize
energy efficiency, they employed a quantum-behaved particle
swarm optimization algorithm, determining optimal subcarrier
and power allocation schemes. Malik et al. [208] studied
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TABLE XII
COMPARISON OF MAC PROTOCOL SCHEMES

(‘EVM’: EVALUATION METHODS; ‘TA’: THEORETICAL ANALYSIS; ‘NS’: NUMERICAL SIMULATIONS; AND ‘FE’: FIELD EXPERIMENTS)

Paper Objectives Constraints Protocol types Performance metrics EVM
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[72],
[73] Maximum receive power Frequency constraint CSMA/CA Receive power;

network throughput TA; NS; FE

[210] Maximum throughput and
energy efficiency Collision probability CSMA/CA Network throughput;

energy efficiency TA; NS

[211] Maximum network throughput SNR constraints Slotted ALOHA Network throughput;
optimal number of random access slots TA; NS

[212] Trade-off delivery probability
and time efficiency SIR constraints TDMA Asymptotic delivery probability;

asymptotic time efficiency TA; NS

[69] Maximum network throughput Individual throughput
constraints TDMA Network throughput TA; NS

[213] Maximum network throughput Time constraint TDMA; CSMA Network throughput;
total harvested energy TA; NS

[214] Maximum network throughput Harvested energy and time
constraints TDMA

Network throughput;
packet reception rate;
average transmission frequency

TA; NS

a multi-access edge computing system with a BS equipped
with a massive MIMO antenna array. They aimed to mini-
mize energy consumption for computation offloading while
maximizing the received energy from wireless charging. The
proposed solution involves data partitioning, time allocation,
and optimal energy beamforming. A similar system configura-
tion is explored in [209], where an efficient nested algorithm
is designed to minimize energy consumption under charging
power and latency constraints by dividing the problem into
convex subproblems, addressing data partitioning, time allo-
cation, power control, and energy beamforming.

By focusing on power control, time allocation, energy beam-
forming, and multi-resource optimization, we can dynamically
manage the limited resources of wireless chargers. This ap-
proach ensures efficient energy transfer, promotes fairness,
and maximizes network performance, striving to enhance the
efficient operation of WCNs.

VI. COMMUNICATION OPTIMIZATION SCHEMES

As WPT integrates into existing wireless networks, optimiz-
ing key protocols and mechanisms is essential for ensuring
normal operation and sustained energy supply. Enhancements
to the MAC protocol, routing protocol, broadcast transmis-
sion, and data collection are critical for coordinating wireless
power and data transmission. MAC protocol optimization is
crucial for managing energy and data reception, minimizing
interference during simultaneous transmissions (Sec. VI.A).
Efficient routing protocols must prioritize paths that balance
energy consumption and data transmission, ensuring network
sustainability (Sec. VI.B). Broadcast transmission must be
refined to accommodate additional energy supply, ensuring
synchronization between power transfer and communication
(Sec. VI.C). Finally, data collection processes must be opti-
mized for real-time monitoring of energy usage and network
performance, enabling dynamic adjustments that enhance ef-
ficiency and reliability (Sec. VI.D).

A. MAC Protocol

In WCNs, the MAC protocol not only controls access
among devices to the shared wireless medium, but also co-
ordinates the power transmission process and communication

process [69], [72], [73], [210], [212]–[215]. The challenge
lies in the diversity of the charging processes among devices,
attributed to factors like charger types and charging distances.
The MAC protocol can adopt a contention-based approach,
exemplified by Carrier Sensing Multiple Access/Collision
Avoidance (CSMA/CA), where each device competes for the
wireless medium, optimizing both power transfer and com-
munication. Alternatively, a contention-free approach can be
employed, assigning devices to specific time slots, frequency
channels, or codes to avoid the collision, exemplified by
Time Division Multiple Access (TDMA). Table XII briefly
summarizes various MAC protocols.

1) Contention-based Protocols: some studies [72], [73],
[210], [211], [215] optimize contention-based MAC protocols.
Naderi et al. [215] explored the concurrent transmission of
power and information in WCNs. Key parameters such as
wireless charging, communication, and interference range are
quantified, and the impacts of frequency separation between
power and information transmission, as well as multiple con-
current power transfers, are investigated. Based on this, in [72],
[73], they optimized the CSMA/CA protocol. This protocol
allows a device with lower energy to broadcast its Request for
Energy (RFE) packet. Upon receiving the RFE packet, nearby
wireless chargers send Cleared for Energy (CFE) packets,
and the device may receive multiple CFE packets. Depending
on the distance between the device and the chargers, nearby
chargers are divided into two groups and assigned slightly
different peak transmission frequencies, facilitating the con-
structive interference of the transmitted energy at the device.
Iqbal et al. [210] proposed a CSMA/CA protocol in a relay-
enabled WCN, where devices receive energy from a Relay-
Hybrid Access Point (RHAP) and transmit information to BSs
via the RHAP. In the proposed protocol, devices and the RHAP
compete for access channels through different contention
mechanisms. The RHAP is given a higher priority, ensuring
more frequent access to the channel. Choi et al. [211] intro-
duced a harvest-or-access protocol based on slotted ALOHA,
where HAPs perform WPT during idle slots.

2) Contention-free Protocols: contention-free MAC proto-
cols in WCNs are investigated in [69], [212]–[214]. Iannello et
al. [212] studied a TDMA-based MAC protocol and analyzed
the trade-off between power delivery probability and data col-
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TABLE XIII
COMPARISON OF ROUTING PROTOCOL SCHEMES

(‘EVM’: EVALUATION METHODS; ‘TA’: THEORETICAL ANALYSIS; ‘NS’: NUMERICAL SIMULATIONS; AND ‘FE’: FIELD EXPERIMENTS)

Paper Objectives Constraints Protocol types Performance metrics EVM
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[74] Maximum energy efficiency Energy budget constraints Hierarchical routing Average residual energy;
traffic load NS

[216] Maximum energy efficiency Energy budget constraints Opportunistic routing Delivery ratio; transmission delay;
average residual energy NS

[217] Maximum energy efficiency
Delays constraints;
throughput constraints;
packet loss constraints

Opportunistic routing
Energy efficiency; delay;
network throughput;
packet loss ratio

NS

[218] Maximum network throughput Energy budget constraints Online routing Network throughput TA; NS

[219] Maximum system utility Energy budget constraints Online routing System utility TA; NS

[220] Minimum energy consumption Energy budget constraints Routing tree Total charging cost NS

[221] Maximum minimum fair rate Flow conservation constraints;
energy budget constraints

Routing tree;
unsplittable routing;
fractional routing

Maximum minimum fair rate TA

lection efficiency. Ju et al. [69] studied a TDMA-based MAC
protocol to maximize network throughput. A hybrid MAC
protocol that utilizes both TDMA and CSMA is introduced
in [213]. The protocol involves a dual WPT method at the BS,
with the main WPT performed in TDMA mode, and the other
WPT performed at space holes in CSMA mode, thus improv-
ing channel utilization and harvested energy. In addition, Hu
et al. [214] designed a TDMA-based MAC protocol to avoid
transmission conflicts and idle interception. They proposed
a modified superframe structure to optimize network traffic
throughput and ensure communication reliability.

B. Routing Protocol
The routing protocol delineates the procedure for finding the

best route to transmit data from the source to the destination. In
WCNs, rechargeable devices feature an additional power sup-
ply, making it imperative for routing protocols to incorporate
this factor into their design. The optimization goals of routing
protocols in WCNs prioritize achieving maximum energy
efficiency and optimizing network throughput, among other
considerations [74], [79], [216], [218]–[221]. A comparison
of various routing protocols is presented in Table XIII.

1) Energy-efficient Protocols: many research efforts are ded-
icated to developing energy-efficient routing protocols [74],
[216], [217]. Cao et al. [74] designed an energy harvesting
routing protocol, which takes energy harvesting as a critical
factor in routing design to improve energy efficiency. To
efficiently select the next hop, they introduced an information
updating mechanism to periodically update the routing table
without extra overhead. Bouachir et al. [216] presented an
opportunistic routing and data dissemination protocol de-
signed for WCNs, based on cross-layer constructs that enable
synchronization and coordination between application layer
services and the routing protocol. In this routing protocol,
each device transmits its sensing data only when it has
enough residual energy, and it selects a relay node among
its neighbors to transmit data based on the number of hops
by creating the forwarder list and the residual energy of its
neighbors. Nguyen et al. [217] designed a routing protocol for
heterogeneous WCNs to address issues of variations in traffic
load and energy availability conditions. They developed an
energy back-off mechanism, which can be integrated into the

proposed routing protocol and the IEEE 802.15.4 CSMA/CA
mechanism. By leveraging the proposed mechanism, optimal
routes for efficiently forwarding data packets from source
nodes to their destinations are obtained.

2) Multi-objective Protocols: some studies [218]–[221] ex-
plore additional optimization goals beyond energy efficiency.
Lin et al. [218] presented a routing protocol designed for
WCNs, with prior knowledge of the power supply. This
protocol computes the lowest-cost path to accommodate each
task in the network, with the cost being an exponential function
of the residual energy. The throughput of this protocol is
proven to achieve an asymptotically optimal competitive ratio
as the number of devices in the network grows to infinity.
Furthermore, the routing protocol is easily integrated into
existing routing protocols. Chen et al. [219] studied the
joint optimization problem of energy allocation and routing
protocol in WCNs. They characterized an upper bound for the
optimal network utility, by constructing an infeasible scheme
that outperforms the optimal scheme. Based on this, they
developed a low-complexity online solution and showed that
the long-term performance of the online solution approaches
the upper bound. Tong et al. [220] were concerned with
the simultaneous determination of network deployment and
routing arrangements in WCNs. They introduced various
heuristic algorithms to minimize charging costs. Marašević et
al. [221] explored max-min fair rate allocation and routing in
WCNs with a predictable energy profile. Specifically, for the
unsplittable routing and routing tree, they developed a fully
combinatorial algorithm applicable in both time-variable and
time-invariable settings. For fractional routing, they developed
an approximation algorithm and a full combinational algorithm
for time-variable and time-invariable settings, respectively.

C. Broadcast Transmission

Broadcast is a fundamental operation in WCNs, dissemi-
nating data from a source sensor node to the whole network.
The investigation into the impact of WPT technology on
broadcasting aims to optimize broadcast reliability and latency.
These studies typically revolve around single-hop or multi-hop
network topologies [75]–[77], [222]–[229]. Table XIV summa-
rizes and compares different broadcast transmission schemes.
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TABLE XIV
COMPARISON OF BROADCAST TRANSMISSION SCHEMES

(‘EVM’: EVALUATION METHODS; ‘TA’: THEORETICAL ANALYSIS; ‘NS’: NUMERICAL SIMULATIONS; AND ‘FE’: FIELD EXPERIMENTS)

Paper Objectives Constraints Network topologies Performance metrics EVM
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[75],
[76]

O1: Maximum transmission reliability
O2: Maximum network throughput
O2: Maximum eclectic utility

Throughput constraints;
transmission reliability
constraints

Single-hop network Successful reception probability;
network throughput NS

[222],
[223]

O1: Minimum broadcast overhead
O2: Minimum broadcast latency Energy provision constraints Single-hop network Broadcast latency; number of

missed nodes; received energy TA; NS

[224] Maximum throughput region Power budget constraint Single-hop network Optimal throughput region TA; NS

[225],
[226] Minimum broadcast latency Harvested energy constraints Single-hop network Broadcast latency TA; NS

[77] Minimum broadcast latency Collision-free constraints Multi-hop network Broadcast latency TA; NS

[227] Minimum broadcast latency Collision-free constraints;
harvested energy constraints Multi-hop network Broadcast latency;

communication overhead TA; NS

[228] Minimum broadcast latency Collision-free constraints;
harvested energy constraints Multi-hop network Broadcast latency;

total number of transmissions TA; NS

[229] Minimum broadcast latency Harvested energy constraints Multi-hop network Broadcast latency;
energy usage ratio TA; NS

1) Single-hop Networks: several studies [75], [76], [222]–
[226] explore broadcast transmission in single-hop networks.
Kuan et al. [75] took both transmission error and energy
deficiency into account and proposed a reliable broadcast
transmission mechanism. To reduce energy consumption, they
adopted an erasure-based forward error correction scheme
to deal with transmission errors. Considering diverse re-
quirements, they proposed reliability-first and throughput-
first broadcast policies, respectively. Furthermore, in their
subsequent work [76], they proposed an eclectic policy that
considers both throughput and reliability, aiming to maximize
the sum of the eclectic utility. In [222], [223], a fast and
reliable broadcast mechanism without disturbing upstream
communications is proposed. During the broadcast process, the
BS dynamically selects the broadcast slot to synchronize with
the charging activity cycle. Meanwhile, devices adapt their
schedules to enable optimal selection of broadcast time slots,
minimizing both the number of broadcasts per message and
the latency. Baknina et al. [224] studied online transmission
schemes where devices know energy arrivals only as they
occur. They considered scenarios where the arriving energy
follows a Bernoulli distribution or independent and identically
distributed, and proposed optimum and sub-optimum online
schemes respectively. In [225], [226], broadcast transmission
over an additive white Gaussian noise channel is studied. To
minimize latency, they proposed offline schemes tailored to
devices with either unlimited or finite battery capacity.

2) Multi-hop Networks: the studies [77], [227]–[229] exten-
sively explore broadcast transmission in multi-hop networks,
with a common objective of minimizing broadcast latency. Zhu
et al. [77] addressed this optimization objective by proposing
three approximate algorithms and analyzing the latency bound
of the broadcast schedules generated by these algorithms.
Yao et al. [227] explored a method for calculating end-
to-end transmission latency. Based on the consideration of
energy supply and conflict, they proposed centralized and
distributed algorithms for constructing conflict-free multicast
trees. Chen et al. [228] investigated the construction of
broadcast trees combined with the computation of energy-
satisfied and collision-free schedules. They introduced two

scheduling algorithms that are mindful of latency and energy
considerations, enabling adaptive construction of the broadcast
tree. Moreover, a delayed broadcasting technique is proposed
to tradeoff between the number of transmissions and latency.
Yao et al. [229] proposed an energy-adaptive, bottleneck-aware
scheduling algorithm to minimize latency, with a thorough
analysis of its correctness and average latency performance.

D. Data Collection
The ultimate critical communication process in WCNs is

data collection, wherein devices gather sensing data and trans-
mit it either directly or through multi-hop relays to a sink
or BS for further processing. Research on this process can
be categorized based on the mobility of the sink [78], [230],
[231], and Table XV compares data collection schemes.

1) Mobile Sink: some studies [78], [230], [231] delve
into scheduling mobile sinks to collect delay-tolerant data.
Mehrabi et al. [78] addressed the problem of maximizing data
collection throughput in WCNs with a mobile sink, where
the mobile sink follows a fixed pattern to collect data on
a pre-specified path. They introduced an optimization model
that considers the effective and heterogeneous duration of
sensor transmissions with the energy harvesting aspect of
the problem. Subsequently, they devised an online centralized
algorithm with polynomial run-time complexity to handle the
problem. In [230], the mobile sink travels along a trajectory
of data collection and is constrained by a specified tolerance
delay. The optimization problem is to find an optimal closed
trajectory for the mobile sink, including both the sojourn
locations and the corresponding sojourn time, to maximize
network throughput. Under the assumption that the mobile
sink can only collect data from one-hop devices, a heuristic
algorithm is proposed to address this optimization problem.
Ren et al. [231] focused on the problem of maximizing data
collection. Assuming that global knowledge of the network is
available, they presented an offline approximation algorithm
with a guaranteed approximation ratio. Additionally, for prac-
tical networks without the global knowledge assumption, they
proposed a fast and scalable online distributed algorithm.

2) Static Sink: the other category of studies uses a static sink
to collect data [79], [232]–[235]. The monitoring quality max-
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TABLE XV
COMPARISON OF DATA COLLECTION SCHEMES

(‘EVM’: EVALUATION METHODS; ‘TA’: THEORETICAL ANALYSIS; ‘NS’: NUMERICAL SIMULATIONS; AND ‘FE’: FIELD EXPERIMENTS)

Paper Objectives Constraints Sinks Network topologies Performance metrics EVM
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[78] Maximum network throughput Energy budget constraints Mobile Single-hop network Network throughput;
data collection latency TA; NS

[230] Maximum network throughput Tolerant delay constraint Mobile Single-hop network Network throughput ratio NS

[231] Maximum data collection Energy provision constraints Mobile Single-hop network Network throughput TA; NS

[79] Maximum monitoring quality Energy budget constraints Static Single-hop network Data collection quality;
running time TA; NS

[232] Maximum data collection Flow conservation constraints;
energy conservation constraints Static Multi-hop network Network utility;

energy utilization ratio TA; NS

[233] Minimum data collection latency Individual SINR constraints;
energy budget constraints Static Multi-hop network Data collection latency TA; NS

[234] Minimum data collection latency Individual SINR constraints;
energy budget constraints Static Multi-hop network Data collection latency;

energy utilization ratio TA; NS

[235] Maximum data collection Individual SINR constraints;
energy budget constraints Static Multi-hop network Network throughput TA; NS

imization problem is explored in [79]. A fast approximation
algorithm with a provable approximation ratio is presented,
such that the weighted, fair data rate allocation and flow
routing problem is solved. Zhang et al. [232] designed a
data acquisition optimization algorithm for dynamic sensing
and routing. They first devised a balanced energy distribution
scheme for the device to manage its energy. Subsequently,
they proposed a distributed sensing rate and routing con-
trol algorithm that together optimizes data sensing and data
transmission, thereby effectively improving the data gathering
process. Zhu et al. [233] focused on the problem of generating
data collection schedules with minimum latency for WCNs.
Their research covers both linear and general network config-
urations, wherein devices are distributed along a line or arbi-
trarily dispersed across a 2D plane. They proposed distributed
algorithms to generate data collection schedules. The work
in [234] regards data collection latency as a design parameter
and proposes a distributed data collection framework. The
framework enables devices to select receivers based on their
state, and more devices per time slot have the opportunity to
transmit, resulting in high spatial parallelism. Song et al. [235]
studied data collection in WCNs, where a HAP employs
switched beamforming for downlink power transmission and
concurrent decoding of multiple uplink transmissions. To
maximize the number of data transmissions, they proposed
an approach enabling the HAP to proactively determine the
mode of future time slots.

Overall, as WPT integrates with wireless networks, optimiz-
ing MAC, routing, broadcast transmission, and data collection
is crucial for seamless operation. These optimizations enhance
power and information coordination, minimize interference,
and ensure efficient and reliable performance of WCNs.

VII. FUTURE RESEARCH DIRECTIONS

This survey discusses charger deployment, charging
scheduling, and communication optimization in WCNs. How-
ever, there are still some open issues. In this section, we outline
some potential research directions for WCNs, including secu-
rity issues, supporting sixth generation (6G) networks, the role
of Artificial Intelligence (AI), millimeter-wave (mmWave)-

enabled WCNs, Intelligent Reflecting Surfaces (IRS)-assisted
WCNs, and metamaterials-aided WCNs.

A. Security Issues in WCNs

In WCNs, wireless chargers are commonly deployed in
remote environments to supply power to rechargeable de-
vices engaged in various monitoring tasks, such as forest fire
detection and illegal activity surveillance. Unfortunately, the
absence of tamper-resistant hardware makes wireless chargers
vulnerable to capture or destruction by malicious attackers.
Once captured, these malicious attackers can take control
of the charger, adjusting transmission power, charging times,
charger direction, and other parameters [165]. In such cases,
rechargeable devices may either receive insufficient power,
hampering their functionality, or too much power, potentially
causing damage to their circuits. Therefore, addressing secu-
rity issues in WCNs becomes imperative. Several fundamental
issues require more attention and further studies, such as:

1) Investigating attacking schemes is of fundamental im-
portance as it can offer valuable attack models for developing
security schemes. Therefore, the key problems in the design of
the attack scheme are how to control the various parameters of
captured chargers to maximize the attacking utility, and how
to disguise the existence of the attack without being detected.

2) Researching security schemes is pivotal for effectively
addressing security issues in WCNs. This involves determining
how to modify charging schemes to ensure adequate power
supply, and how to design attack detection schemes that
can identify captured chargers. These efforts are crucial for
fortifying the security of WCNs.

B. Supporting 6G in WCNs

The forthcoming mobile network generation, 6G, demands
nearly unlimited battery life for devices to achieve near-
instant, seamless wireless connectivity [236]. As 6G deploy-
ment progresses, WCNs will play a critical role in meeting
this requirement by enabling continuous and efficient energy
replenishment for a vast array of devices. Supporting 6G in
WCNs involves addressing several fundamental issues:

1) With 6G supporting billions of connected devices, WCNs
must efficiently manage power delivery across a massive
network. Wireless charging schemes should consider device
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priorities, energy requirements, etc., to achieve dynamic en-
ergy management in large-scale WCNs.

2) To achieve near-instant communication, 6G requires
fast and efficient energy transfer. This necessitates advanced
communication optimization schemes within WCNs to ensure
that devices receive sufficient power promptly without com-
promising communication quality.

C. AI-based Design

In WCNs, AI can predict dynamic charging demands
and device states, enabling real-time adjustments to charging
schemes based on network load and topology changes, max-
imizing energy efficiency [237], [238]. Additionally, genera-
tive AI enhances network robustness by generating simulated
interference, attack, and failure data, supporting the design of
fault-tolerant and resilient mechanisms that account for various
anomalies. By analyzing user behavior, AI can also offer per-
sonalized charging designs, with adaptive learning capabilities
that adjust schemes according to user habits and preferences,
improving user satisfaction. Future research will continue to
deepen the application of AI in WCNs, driving the network
towards higher levels of intelligence and stability. However,
some fundamental problems are still open, for example:

1) How to accurately predict various dynamic parameters
like charging demands, device states, and topological changes
in complex networks, providing essential insights for optimiz-
ing subsequent charging schemes.

2) How to leverage generative AI to adaptively modify
charging schemes, enabling WCNs to better respond to net-
work changes and improve overall reliability and stability.

D. mmWave-enabled WCNs

The mmWave frequencies (30-300 GHz), along with the
potential extension into terahertz (THz) frequencies (300 GHz
to 10 THz), offer promising solutions for improving both
energy transfer and data transmission in WCNs. The growing
demand for data transmission has led to increasingly congest-
ing traditional spectrum resources. Leveraging mmWave fre-
quencies can effectively address the requirements for gigabit-
level information transmission [239]. Compared with tradi-
tional WPT, mmWave WPT provides more focused energy
with smaller relative antennas, large spectrum resources, and
less interference to other networks [240]–[242]. But there
are some fundamental problems that need more attention and
research, for example:

1) The wavelength of mmWave shrinks by an order of mag-
nitude compared to microwave frequencies, leading to greater
attenuation through diffraction and material penetration. This
increases the importance of Line-of-Sight (LOS) transmission.
In this case, addressing how to strategically deploy wireless
chargers to optimize mmWave benefits while ensuring LOS
transmission poses a complex challenge.

2) Moreover, the adoption of mmWave with shorter wave-
lengths leads to larger path loss. Therefore, mmWave-enabled
WCNs require a combination of beamforming technology to
improve the directivity and efficiency of power transmission.
Consequently, how to design beamforming with higher gain to
compensate for the larger path loss is a critical consideration.

E. IRS-assisted WCNs
The IRS, consisting of a large number of low-cost reflecting

elements, is capable of reflecting incident RF signals [243].
In IRS-assisted WCNs, the IRS can greatly improve the
performance of WCNs by smartly adjusting the phase shift of
each of the reflecting elements. It captures the RF signal, op-
timally reflecting it to achieve improved charge efficiency and
interference suppression within a specific area [244], [245].
Additionally, in cases where the LOS path between the charger
and the device is obstructed, the IRS can be utilized to create
alternative LOS charging schemes, further enhancing network
performance [246]. However, some fundamental issues still
require further study, such as:

1) The IRS controls the amplitude, phase, and propagation
direction of the RF signal by intelligently adjusting the phase
of each reflecting element. So, how to adjust these phases to
maximize charging efficiency and coverage area is essential.

2) How to deploy wireless chargers and IRSs to solve non-
line-of-sight charging scenarios, such that the overall charging
utility of the network is maximized.

F. Metamaterials-aided WCNs
Metamaterials are artificially engineered materials that ex-

hibit unique electromagnetic properties, including evanes-
cent wave amplification and negative refractive characteris-
tics. These properties can be harnessed to enhance near-field
WPT [247]–[249]. In metamaterials-aided WCNs, placing the
metamaterial slab between the transmission coil and receiving
coil can effectively improve charging efficiency or increase
charging distance by leveraging the properties of the metama-
terial slab. However, there are still some fundamental problems
that require further study:

1) In metamaterial-aided WCNs, metamaterial slabs are usu-
ally larger than or at least equal to the size of the transmission
coil and the receiving coil, but this undoubtedly reduces the
convenience of the network. Therefore, a key challenge is how
to minimize the size of the metamaterial slab while ensuring
charging efficiency.

2) Since charging efficiency is influenced by the relative
position of the metamaterial slabs, transmission coil, and
receiving coil, it is necessary to consider how to deploy
wireless chargers and metamaterial slabs to maximize the
overall charging utility of the network.

VIII. CONCLUSION

This survey paper provides a comprehensive study of the
state-of-the-art of WCNs. We first introduce WCNs in detail,
covering aspects such as network architecture, basic compo-
sition, various charging modes, network design issues, and
typical applications. Then, we provide a summary and analysis
of existing research in WCNs, focusing on three key aspects:
charger deployment, charging scheduling, and communication
optimization. In particular, we provide information tables
summarizing these optimization strategies in WCNs. We also
list some important open issues and indicate potential research
directions for WCNs. We hope that this survey paper will help
readers understand the general architecture and the holistic
knowledge of WCNs.
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